Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecule linked to autoimmune disease relapses identified at Stanford

05.12.2006
The ebb and flow of such autoimmune diseases as multiple sclerosis, lupus and rheumatoid arthritis has long been a perplexing mystery. But new findings from the Stanford University School of Medicine bring scientists closer to solving the puzzle, identifying a molecule that appears to play a central role in relapses.

The study, to be published in the Dec. 3 advance online edition of Nature Immunology, lays the groundwork for a way to determine when a relapse is about to occur, and could eventually lead to a treatment to prevent relapses. "Right now, there is no good blood test to evaluate when a person is going to have a flare-up," said senior author Larry Steinman, MD, professor of neurology and neurological sciences. "If we had one, we might be able to give them prophylactic preventive medication."

The current study had its genesis five years ago: In a paper published in 2001 in the journal Science, Steinman found that a protein called osteopontin was abundant in multiple sclerosis-affected brain tissue, but not in normal tissue. Since then, other groups have confirmed that osteopontin is elevated just prior to and during a relapse of the disease in M.S. patients.

Although the protein had been known to play a role in bone growth, it was unclear why it would be associated with multiple sclerosis, which results when the immune system attacks the protective myelin sheath surrounding nerve cells.

To explore this question, Eun Mi Hur, PhD, who was then a graduate student in Steinman's lab, began using a mouse model of multiple sclerosis (experimental autoimmune encephalomyletis, or EAE) to investigate how osteopontin could cause these flare-ups. She and Steinman gave osteopontin to mice that had already experienced paralysis, similar to that of an M.S. patient, and found that the mice then experienced a relapse of the disease.

The researchers also found that the relapse would occur sometimes in an area of the brain other than the site of the original attack. For example, after receiving the osteopontin, some animals that had previously suffered paralysis became blind from a condition called optic neuritis. One feature of multiple sclerosis is that the flare-ups can affect different parts of the nervous system at different times.

"When I saw that all mice with EAE relapsed and died from the disease after about a month of osteopontin administration, I was surprised," said Hur, the study's first author who is now a postdoctoral scholar at Caltech. "I got a strong belief that a high level of osteopontin in patients' blood and tissue is a major contributor of the relapse and progression of the disease."

Through the mouse studies and molecular characterizations, Hur and Steinman showed that osteopontin - produced by immune cells and brain cells themselves - promotes the survival of the T cells that carry out the damaging attack on myelin; by increasing the number of these T cells, osteopontin increases their destructive potential. These results could be applicable to many other autoimmune diseases, including rheumatoid arthritis, type-1 diabetes and lupus.

Indeed, the effect of osteopontin may severely alter the way the immune system works. Normally, after the immune system does its job - eradicating a microbe, for instance - the response is then dialed down. If this didn't happen, the immune response would go on indefinitely. Imagine a cold or an attack of poison oak that would last forever.

One of the ways that the immune response is muffled is that the activated T cells die in a process known as apoptosis. That is precisely what osteopontin seems to prevent. Osteopontin lets the T cells linger in the blood, ready to attack again. "We don't know exactly what triggers that new attack but the cells certainly are around and ready to do it," said Steinman. So scientists now face the challenge of figuring out how and why osteopontin is produced. "We're back to the chicken-and-the-egg problem," said Steinman. "We know the egg, so why did the chicken lay it" That is a trickier problem to work out."

Even without knowing the answer to that question, there is one inviting practical use of their observations: Osteopontin could be used as a marker of an impending relapse. What's more, if the protein could be blocked, it might thwart the relapse from ever occurring. Steinman's lab is working to develop antibodies to inactivate the protein's effect. "It's still a long road between saying we want to do it and getting the antibodies, getting it approved by the FDA and getting it tested," said Steinman, "but we are determined to do that."

Still, Steinman offered a caveat. Researchers may find that blocking osteopontin has undesirable side effects. The protein may serve other purposes in addition to promoting survival of immune cells. It could also be vital to the body's ability to produce myelin, a function that could cause severe problems if disrupted. "Like a lot of important biological molecules, osteopontin has a Janus-like quality - a bad side and a good side," Steinman said. "We're going to be extremely lucky if we give the antibody opposing osteopontin and derive just the good side: We stop the autoimmune attack but don't interfere with the survival of other cells."

Further study will determine whether thwarting osteopontin's effect yields new types of treatments for autoimmune diseases, but regardless, it is likely to lead to discoveries in a host of areas. "I think osteopontin will turn out to be important in a lot of processes, spanning autoimmunity to stem cells," said Steinman. "It's probably going to turn out to be a very basic growth factor."

Mitzi Baker | EurekAlert!
Further information:
http://www.stanford.edu

Further reports about: Osteopontin Steinman T cells autoimmune flare-up multiple sclerosis relapse

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>