Beyond the bonds that bind: UCSB researchers discover hydrogen can form multicenter bonds

Tested for hydrogen in metal oxides, the discovery could have a broad range of technological impact. The research is available today in the advance online publication of Nature Materials.

Professor Chris G. Van de Walle and Project Scientist Anderson Janotti, both of the Materials Department of the College of Engineering at UC Santa Barbara, have shown that multi-coordinated hydrogen is a likely explanation for electronic conductivity in metal oxides. Metal oxides are widely used in everything from sunscreen to sensors.

Hydrogen, the simplest of the elements (consisting of one proton and one electron) is typically expected to exhibit simple chemistry when forming molecules or solids. Hydrogen atoms almost always form a single bond to just one other atom, leading to a two-center bond with two electrons. Exceptions to the rule are rare; there are only a few cases when hydrogen bonds simultaneously to two other atoms, forming a three-center bond.

Hydrogen can replace an oxygen atom and form a multicenter bond with adjacent metal atoms. For example, in ZnO, hydrogen equally bonds to the four surrounding Zn atoms, becoming fourfold coordinated. These multicenter bonds are highly stable and explain previously puzzling variations in conductivity as a function of temperature and oxygen pressure. The results suggest that hydrogen can be used as a substitutional dopant in oxides, a concept that is counterintuitive and should be of wide interest to researchers.

Media Contact

Barbara B. Gray EurekAlert!

More Information:

http://www.ucsb.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors