Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Weighty Viruses

05.12.2006
Weight determination of individual viruses with a miniature ion trap

Viruses are the simplest life forms on our planet, consisting of only DNA or RNA and a shell. After the prokaryotes (bacteria and archebacteria), viruses are the second most common type of organism. In our oceans they are the most common life form.

In order to gain a better understanding of the structure and characteristics of these genetically varied little organisms, it would be highly useful to be able to determine their masses and how much these vary within a given population. Researchers in Taiwan have now used very gentle ionization techniques and a miniaturized ion trap of their own devising to accurately analyze the masses of individual, intact viruses.

Previous methods for determining the masses of viruses had a margin of error of ±15%, which made them too inaccurate to ensure the resolution of small differences in mass. A team led by Huan-Cheng Chang has developed a new concept to attain higher precision. In order to determine their mass, viruses must first be converted to the gas phase, given an electric charge, and accelerated in an electric field. However, this process must leave the viruses intact. The researchers thus chose to use a very gentle method known as LIAD (laser-induced acoustic desorption). The virus particles are released from the sample by laser-induced sound waves. They are then caught in an “ion trap”.

... more about:
»Ion »Particle »Virus »mass

This is an electric field that holds charged particles prisoner by means of its special geometry and alternating voltage. Once trapped, the virus particles are ready for mass determination. Laser light is beamed into the ion trap. If a particle is present, it scatters the light. The scattered light can be detected through the transparent surfaces of the ion trap. A portion of the light is sent to a CCD camera, which records the flight path of the trapped particle. The rest of the light goes to a measuring device that precisely analyzes the scattering signal. The scattered light is different from the initial light beam because the virus particle in the electric field of the ion trap begins to oscillate. This oscillation depends on the mass (and charge) of the virus.

The team was thus able to determine the masses of three different types of viruses with diameters between 80 and 300 nm—with an astonishingly low margin of error of ±1%. The masses of the viruses can, in combination with other analytical processes, be used to infer how many building blocks are used to make up the shell of the virus or how many copies of the genetic material it contains.

These highly precise measurements were made possible by the special structure of the ion trap; instead of a classic quadrupole ion trap, Chang and co-workers chose to use a cylindrical ion trap (CIT). In this type of trap, the movement of the trapped ions is considerably more complex and not mathematically ascertainable. However, it has the advantage of a much simpler geometry. The team constructed a CIT with smaller dimensions than usual, optimized the geometry, and exchanged the usual terminal electrodes of the cylinder with transparent, electrically conducting plates. This special construction is what made application of the precise light-scattering technique for the mass determination of a single virus possible.

Author: Huan-Cheng Chang, Academia Sinica, Taipei (Taiwan), http://www.iams.sinica.edu.tw/web2006_e/Huan-Cheng%20Chang.html

Title: Microscopy-Based Mass Measurement of a Single Whole Virus in a Cylindrical Ion Trap

Angewandte Chemie International Edition 2006, 45, No. 48, 8131–8134, doi: 10.1002/anie.200603839

Huan-Cheng Chang | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://www.wiley.co.uk

Further reports about: Ion Particle Virus mass

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>