Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Weighty Viruses

05.12.2006
Weight determination of individual viruses with a miniature ion trap

Viruses are the simplest life forms on our planet, consisting of only DNA or RNA and a shell. After the prokaryotes (bacteria and archebacteria), viruses are the second most common type of organism. In our oceans they are the most common life form.

In order to gain a better understanding of the structure and characteristics of these genetically varied little organisms, it would be highly useful to be able to determine their masses and how much these vary within a given population. Researchers in Taiwan have now used very gentle ionization techniques and a miniaturized ion trap of their own devising to accurately analyze the masses of individual, intact viruses.

Previous methods for determining the masses of viruses had a margin of error of ±15%, which made them too inaccurate to ensure the resolution of small differences in mass. A team led by Huan-Cheng Chang has developed a new concept to attain higher precision. In order to determine their mass, viruses must first be converted to the gas phase, given an electric charge, and accelerated in an electric field. However, this process must leave the viruses intact. The researchers thus chose to use a very gentle method known as LIAD (laser-induced acoustic desorption). The virus particles are released from the sample by laser-induced sound waves. They are then caught in an “ion trap”.

... more about:
»Ion »Particle »Virus »mass

This is an electric field that holds charged particles prisoner by means of its special geometry and alternating voltage. Once trapped, the virus particles are ready for mass determination. Laser light is beamed into the ion trap. If a particle is present, it scatters the light. The scattered light can be detected through the transparent surfaces of the ion trap. A portion of the light is sent to a CCD camera, which records the flight path of the trapped particle. The rest of the light goes to a measuring device that precisely analyzes the scattering signal. The scattered light is different from the initial light beam because the virus particle in the electric field of the ion trap begins to oscillate. This oscillation depends on the mass (and charge) of the virus.

The team was thus able to determine the masses of three different types of viruses with diameters between 80 and 300 nm—with an astonishingly low margin of error of ±1%. The masses of the viruses can, in combination with other analytical processes, be used to infer how many building blocks are used to make up the shell of the virus or how many copies of the genetic material it contains.

These highly precise measurements were made possible by the special structure of the ion trap; instead of a classic quadrupole ion trap, Chang and co-workers chose to use a cylindrical ion trap (CIT). In this type of trap, the movement of the trapped ions is considerably more complex and not mathematically ascertainable. However, it has the advantage of a much simpler geometry. The team constructed a CIT with smaller dimensions than usual, optimized the geometry, and exchanged the usual terminal electrodes of the cylinder with transparent, electrically conducting plates. This special construction is what made application of the precise light-scattering technique for the mass determination of a single virus possible.

Author: Huan-Cheng Chang, Academia Sinica, Taipei (Taiwan), http://www.iams.sinica.edu.tw/web2006_e/Huan-Cheng%20Chang.html

Title: Microscopy-Based Mass Measurement of a Single Whole Virus in a Cylindrical Ion Trap

Angewandte Chemie International Edition 2006, 45, No. 48, 8131–8134, doi: 10.1002/anie.200603839

Huan-Cheng Chang | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://www.wiley.co.uk

Further reports about: Ion Particle Virus mass

More articles from Life Sciences:

nachricht New catalyst controls activation of a carbon-hydrogen bond
21.11.2017 | Emory Health Sciences

nachricht The main switch
21.11.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>