Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Invasive Ants Territorial When Neighbors Are Not Kin

04.12.2006
A study led by UC San Diego biologists shows that invasive Argentine ants appear to use genetic differences to distinguish friend from foe, a finding that helps to explain why these ants form enormous colonies in California.

In the December issue of the journal Molecular Ecology, the biologists provide the first data on territorial interactions among Argentine ants in the field. In California, Argentine ants form expansive “supercolonies” containing millions of nests and stretching hundreds of miles. Researchers have disagreed on the reason for the lack of aggression between ants from different nests in the same colony.

“Some ecologists have hypothesized that environmental factors act to reduce aggression among Argentine ants in California,” said David Holway, an assistant professor of biology at UCSD and senior author on the study. “However, we found that while ants from the same supercolony do not fight, clashes between ants from different supercolonies occur commonly along territorial borders.”

The distance between nests did not play a role in ants’ territorial behavior. Nor were there any obvious environmental clues to explain why ants would attack ants of the same species from one neighboring nest but not another. However, the researchers found a very close relationship between behavior and genetics. Ants that were genetically similar had peaceful relations. Ants that were genetically different attacked each other.

... more about:
»Argentine »ants »colonies »supercolonies »supercolony
“Our results are strong evidence that lack of genetic diversity permits supercolonies to arise,” said Melissa Thomas, who was a postdoctoral fellow working with Holway when she collected the data on territorial interactions. “Workers cannot differentiate between nestmates and non-nestmates if they all seem the same. So ants from different nests in the same colony do not fight with each other.”

Five supercolonies of Argentine ants are known to occur in southern California. The largest supercolony extends about 600 miles throughout coastal California and abuts three of the four smaller colonies. At the territory borders, ants from different colonies engage in intense battles that result in the deaths of considerable numbers of workers. Thomas collected dead workers along small sections of the borders weekly. She estimated that border skirmishes around one of the smaller colonies, at Lake Hodges north of San Diego, killed at least 15 million workers over the six month study.

However, ants did not fight when placed with ants from a distant location in the same supercolony. Coauthors Christine Payne-Makrisâ and Andrew Suarez from the University of Illinois, Urbana and Neil Tsutsui from U.C. Irvine found that across the large geographical range of a supercolony ants were very genetically similar, but they were genetically distinct from ants in neighboring supercolonies. The researchers say that by keeping peace with their kin, the ants may be able to devote more resources to breeding rather than competing.

“Territory defense is expensive both in time and workers,” explained Thomas, now a postdoctoral fellow at the University of Western Australia. “If nests invest this time and workforce into collecting resources and raising larvae instead of defending territories, then colonies should grow at a much faster rate.”

In their native Argentina, aggressive interactions between colonies are much more common and colonies are significantly smaller. When Argentine ants were introduced to California 100 years ago, they spread widely because they did not encounter other colonies of Argentine ants. The biologists think that the distinct supercolonies in southern California arose from separate introductions of the ants, possibly in the soil of plants used in landscaping.

They hope that a better understanding of how the ants distinguish kin from non-kin, and the mechanisms that prevent gene flow between colonies, might lead to more effective ways to control the ants. That would be good news for anyone surrounded by the pervasive creatures.

“When people saw that the ants from different supercolonies were fighting with each other, they were glad to know that things were moving in the right direction,” quipped Holway.

The study was supported by the U.S. Department of Agriculture, the California Department of Consumer Affairs Structural Pest Control Board.

Sherry Seethaler | EurekAlert!
Further information:
http://www.ucsd.edu

Further reports about: Argentine ants colonies supercolonies supercolony

More articles from Life Sciences:

nachricht Stiffness matters
22.02.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Separate brain systems cooperate during learning, study finds
22.02.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>