Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Found -- the apple gene for red

04.12.2006
CSIRO researchers have located the gene that controls the colour of apples – a discovery that may lead to bright new apple varieties.

"The red colour in apple skin is the result of anthocyanins, the natural plant compounds responsible for blue and red colours in many flowers and fruits," says the leader of the CSIRO Plant Industry research team, Dr Mandy Walker.

"Colour is a very important part of fruit marketing," she says. "If fruit doesn't look good, consumers are far less likely to buy it, no matter how good it might taste.

"As well as giving apples their rosy red hue, anthocyanins are also antioxidants with healthy attributes, giving us plenty of reasons to study how the biochemical pathway leading to apple colour is regulated."

... more about:
»anthocyanins »breed

A Post Doctoral Fellow with the team, Dr Adam Takos, used the latest molecular technology to measure how much particular genes were activated, or expressed, in apple skin as the fruit ripened and coloured.

"Apple growers have always known that apple colour is dependant on light – apples grown in darkness or even heavy shade don't turn red when they ripen," Dr Walker says. "That made it very likely that the gene we were looking for requires light to be activated."

"By identifying master genes that were activated by light, Adam was able to pinpoint the gene that controls the formation of anthocyanins in apples, and we found that in green apples this gene is not expressed as much as in red apples."

In collaboration with apple breeders at the Department of Agriculture and Food in Western Australia (DAFWA), the scientists were able to show that fruit colour can be predicted even in seedling apple plants by measuring the form of this gene that is present.

The new knowledge about how apple colour is regulated will give plant breeders the opportunity to use these molecular marker tests to speed up apple breeding and select for improved fruit colour. Dr Walker believes that this research could open the way to breeding new apple varieties.

"With a better understanding of how apple colour is controlled we can begin to breed apples with new and interesting colour variations," she says. "We may even be able to breed apples that are better for you, though they already play an important role in a healthy diet!"

The research is a collaboration between CSIRO and the DAFWA, which has partly funded the project with a voluntary contribution. The project has been facilitated by Horticulture Australia Ltd (HAL) in partnership with industry and has been funded as part of HAL's 'across industry program'. The Australian Government provides matched funding for all HAL's research and development activities.

Sophie Clayton | EurekAlert!
Further information:
http://www.csiro.au

Further reports about: anthocyanins breed

More articles from Life Sciences:

nachricht Repairing damaged hearts with self-healing heart cells
22.08.2017 | National University Health System

nachricht Biochemical 'fingerprints' reveal diabetes progression
22.08.2017 | Umea University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>