Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein protects against nerve degeneration

04.12.2006
A protein called NMNAT protects against nerve cell degeneration in fruit flies and mice, said Baylor College of Medicine researchers in a report in the Public Library of Science Biology that appears online today.

The finding begs the question if a drug might be developed that could stimulate extra protein production and thus neuronal protection – both in injured cells and in those degenerating because of disease, said Dr. Hugo Bellen, the paper's senior author, director of the BCM Program in Developmental Biology and a Howard Hughes Medical Institute investigator. While more work needs to be done to determine whether that would be desirable, Bellen said the finding is an important one because it identifies NMNAT as essential in the life of the body's neurons.

Much of the work described in the paper was done by its first author, Dr. R. Grace Zhai, a postdoctoral fellow in Bellen's laboratory.

The story began two decades ago when researchers in the U.K. discovered a mouse whose injured nerve cells were slow to die. Even when the nerve was cut, it had some function two weeks later while in a normal mouse injured nerves are non-functional within two days, said Bellen.

... more about:
»Bellen »Degeneration »NMNAT »Nerve

Five years ago, researchers discovered that the mice had three copies of a gene for a protein that was a fusion of NMNAT and another protein. Bellen and his colleagues sought to determine whether NMNAT was actually protective by studying mutant forms of it in fruit flies or Drosophila melanogaster, a commonly used model organism. NMNAT exists in a single state in the fruit fly, and there is only one form of it.

When Zhai, Bellen and colleagues bred flies that lack the protein in their visual system, they found that the neurons degenerated very rapidly. However, the degeneration could be slowed by keeping the flies in the dark and preventing their visual neurons from activating.

"In the absence of the NMNAT protein, the photoreceptors in the eye develop normally. They send out axons (tendril extension of the nerve that grow into the brain) and make synapses (the functional connection between a nerve axon and the target cell)," said Bellen.

However, late in the development of the eye, the insects in the pupal stage begin to sense light. As the neurons become active, they degenerate rapidly. Within two weeks after birth, there are almost no neurons left.

"Here is a case where the protein is required for the maintenance of the neuron," said Bellen.

When flies were raised in the dark, the neurons died, but at very slow pace when compared to those exposed to light.

"Activity clearly causes a massive degeneration," he said.

When they exposed flies that made large quantities of NMNAT in the eye to bright sunlight for 30 days, they found that only 20 percent of the neurons died – not the 80 percent that would have been expected.

"This protein can delay the neuronal degeneration process if it is present at a high level," said Bellen.

They also found that NMNAT alone and not the enzyme partner found in mice and other vertebrates was sufficient to protect the neurons.

Bellen said more work needs to be done to identify the mechanisms at work in the neuronal protection and to determine how to prompt cells to increase productions of the protein.

Ross Tomlin | EurekAlert!
Further information:
http://www.bcm.edu

Further reports about: Bellen Degeneration NMNAT Nerve

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Scientists re-create brain neurons to study obesity and personalize treatment

20.04.2018 | Health and Medicine

Spider silk key to new bone-fixing composite

20.04.2018 | Materials Sciences

Clear as mud: Desiccation cracks help reveal the shape of water on Mars

20.04.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>