Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Newly Discovered Immune Defense May Be Impaired In CF Airways

A recent University of Iowa study reveals a new immune defense mechanism in normal airways and may help explain why people with cystic fibrosis (CF) are particularly susceptible to bacterial lung infections. The findings also may point the way to new approaches for treating the disease.

The UI study shows how two enzymes generate and use reactive oxygen species (ROS) to destroy bacteria in normal airways. The team also found that this process is defective in airway tissue and cells containing the CF gene mutation. The study is published in the Nov. 2 online issue of the American Journal of Respiratory and Critical Care Medicine.

"Among the host defense systems that we know of in the airway, at least in cell culture and tissue explants, this is one of the most efficient antibacterial system we have identified," said Botond Banfi, M.D., Ph.D., UI assistant professor of anatomy and cell biology and senior study author. "The findings suggest that one reason for CF patients' weakened innate immunity might be the absence of this natural oxidative host defense mechanism."

Banfi added that correcting the problem by reconstituting the oxidative system might represent a totally new approach for preventing the onset of bacterial lung infections that often become chronic and eventually fatal in CF patients.

... more about:
»Banfi »Oxidative »infections »thiocyanate

Working with airway cells and tissues from rats, cows and humans, the UI team uncovered the oxidative system, which produces hypothiocyanite -- a highly effective antibacterial compound. Banfi and his colleagues, including Patryk Moskwa, M.D., Ph.D., a UI postdoctoral fellow and first author of the study, showed that one airway enzyme (Duox) makes hydrogen peroxide and a second enzyme (lactoperoxidase) uses the hydrogen peroxide to convert a small molecule called thiocyanate into the bacteria-killing hypothiocyanite.

The UI researchers also showed that the critical thiocyanate cannot be transported across airway cells with the CF mutation, which means that hypothiocyanite is not produced. In other words, without thiocyanate the oxidative antibacterial system breaks down.

These results suggest that thiocyanate may not be present in the airway surface liquid of individuals with CF. Banfi and his colleagues intend to test that hypothesis by comparing thiocyanate levels in airway surface liquid from CF patients and from healthy individuals.

Thiocyanate is naturally present in body fluids like blood and saliva. Despite its name and its chemical relationship to cyanide, thiocyanate is not toxic. Hypothiocyanite is also harmless to human cells and tissues, but the UI team found that it is extremely efficient at killing bacteria including those most commonly associated with fatal lung infections in CF patients - Staphylococcus aureus and Pseudomonas aeruginosa.

"If we could reconstitute thiocyanate concentrations in the airway surface liquid, perhaps using a nebulizer, it might boost host defenses in CF patients and help prevent bacterial lung infections," Banfi said.

In addition to Banfi and Moskwa, the UI team included graduate student, Daniel Lorentzen; Katherine Excoffon, Ph.D., associate research scientist; Joseph Zabner, M.D., professor of internal medicine; Paul McCray, M.D., the Roy J. Carver Chair in Pulmonary Research and professor of pediatrics; and William Nauseef, M.D., professor of internal medicine. Corinne Dupuy at INSERM in Paris, France also was part of the research team.

The study was funded in part by the Cystic Fibrosis Foundation.

Jennifer Brown | EurekAlert!
Further information:

Further reports about: Banfi Oxidative infections thiocyanate

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>