Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

With Fruit Fly Sex, Researchers Find Mind-Body Connection

04.12.2006
The fruit fly gene “doublesex” is responsible for ensuring that male flies look male and females look female. New Brown University research led by biologist Michael McKeown shows that doublesex not only helps shape bodies but also shapes behavior, acting with together with the gene “fruitless” to guide flies’ courtship routines and responses. The finding, published in Nature Genetics, shows that sexual development in flies – and, perhaps, in humans – is a more complicated proposition than previously thought.

Male fruit flies are smaller and darker than female flies. The hair-like bristles on their forelegs are shorter, thicker. Their sexual equipment, of course, is different, too.

“Doublesex” is the gene largely responsible for these body differences.

Doublesex, new research shows, is responsible for behavior differences as well. The finding, made by Brown University biologists, debunks the notion that sexual mind and sexual body are built by separate sets of genes. Rather, researchers found, doublesex acts in concert with the gene “fruitless” to establish the wing-shaking come-ons and flirtatious flights that mark male and female fly courtship.

... more about:
»McKeown »courtship »doublesex »fruitless »sexual

Results are published in Nature Genetics.

“What we found here, and what is becoming increasingly clear in the field, is that genetic interactions that influence behavior are more complex than we thought,” said Michael McKeown, a Brown biologist who led the research. “In the case of sex-differences in flies, there isn’t a simple two-track genetic system – one that shapes body and one that shapes behavior. Doublesex and fruitless act together to help regulate behavior in the context of other developmental genes.”

How genes contribute to behavior, from aggression to alcoholism, is a growing and contentious area of biology. For more than a decade, McKeown has been steeped in the science, using the fruit fly as a model to understand how genes build a nervous system that, in turn, controls complex behaviors. Since humans and flies have thousands of genes in common, the work can shine a light on the biological roots of human behavior. For example, McKeown recently helped discover a genetic mutation that causes flies to develop symptoms similar to Alzheimer’s disease – a gene very similar to one found in humans.

Some of McKeown’s recent work focuses on understanding gene networks that control sexual behavior. Research on the topic is often contradictory. Some scientists suggest that the fruitless gene, active only in males, controls courtship and sexual receptivity by repressing female behavior and activating male behavior. Other scientists have found that a web of interacting genes control courtship and receptivity. McKeown wanted to settle the debate.

McKeown suspected that multiple genes shape behavior and that doublesex played a role. But experimenting with doublesex is difficult. When both copies of the gene are removed – a powerful way to test gene function – flies have the physical features of both sexes. As a result, these mutant females are not recognized by normal males and these mutant males are not recognized by normal females – and none of the mutants can mate. So this makes it difficult for scientists to categorize their behavior as gender appropriate.

So McKeown raised flies missing one of two copies of doublesex, a process that didn’t completely remove the gene’s influence but drastically reduced it. The result: Flies’ sexual equipment was intact, but, theoretically, their sexual behavior might be different. McKeown and graduate student Troy Shirangi also reduced the activity of the fruitless gene as well as one called “retained.”

Shirangi and McKeown did, indeed, see a doublesex influence. Doublesex helped the males act macho during courting – chasing females, shaking their wings to “sing” love songs, tapping or licking their intended mates. In females, doublesex worked together with the gene retained to make them more receptive to this wooing; Females with two good copies of the gene were more likely to listen to love songs and to copulate. Interestingly, reducing the activity of doublesex or retained also allowed females to court like males, even though they lack the male-behavior-inducing activity of fruitless.

By manipulating fruitless and retained in other experiments, McKeown and his team found critical interactions, or overlaps, in the “mind” and “body” pathways. Retained acts in both sexes, repressing male courting behavior and boosting female receptivity. Fruitless and doublesex act together, as a switch system, to affect this sexual behavior.

“The big story is the crossover between the ‘mind’ and ‘body’ pathways,” McKeown said. “If sexual behaviors are genetically controlled in humans, I expect that this system would be just as much, if not more, complicated.”

Shirangi, a graduate student in the Department of Molecular Biology, Cell Biology and Biochemistry at Brown, was lead author of the Nature Genetics article. Barbara Taylor, an associate professor of zoology at Oregon State University, also took part in the fly research.

The National Science Foundation and the National Institutes of Health funded the work.

Editors: Brown University has a fiber link television studio available for domestic and international live and taped interviews and maintains an ISDN line for radio interviews. For more information, call the Office of Media Relations at (401) 863-2476.

Wendy Lawton | EurekAlert!
Further information:
http://www.brown.edu

Further reports about: McKeown courtship doublesex fruitless sexual

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>