Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

With Fruit Fly Sex, Researchers Find Mind-Body Connection

04.12.2006
The fruit fly gene “doublesex” is responsible for ensuring that male flies look male and females look female. New Brown University research led by biologist Michael McKeown shows that doublesex not only helps shape bodies but also shapes behavior, acting with together with the gene “fruitless” to guide flies’ courtship routines and responses. The finding, published in Nature Genetics, shows that sexual development in flies – and, perhaps, in humans – is a more complicated proposition than previously thought.

Male fruit flies are smaller and darker than female flies. The hair-like bristles on their forelegs are shorter, thicker. Their sexual equipment, of course, is different, too.

“Doublesex” is the gene largely responsible for these body differences.

Doublesex, new research shows, is responsible for behavior differences as well. The finding, made by Brown University biologists, debunks the notion that sexual mind and sexual body are built by separate sets of genes. Rather, researchers found, doublesex acts in concert with the gene “fruitless” to establish the wing-shaking come-ons and flirtatious flights that mark male and female fly courtship.

... more about:
»McKeown »courtship »doublesex »fruitless »sexual

Results are published in Nature Genetics.

“What we found here, and what is becoming increasingly clear in the field, is that genetic interactions that influence behavior are more complex than we thought,” said Michael McKeown, a Brown biologist who led the research. “In the case of sex-differences in flies, there isn’t a simple two-track genetic system – one that shapes body and one that shapes behavior. Doublesex and fruitless act together to help regulate behavior in the context of other developmental genes.”

How genes contribute to behavior, from aggression to alcoholism, is a growing and contentious area of biology. For more than a decade, McKeown has been steeped in the science, using the fruit fly as a model to understand how genes build a nervous system that, in turn, controls complex behaviors. Since humans and flies have thousands of genes in common, the work can shine a light on the biological roots of human behavior. For example, McKeown recently helped discover a genetic mutation that causes flies to develop symptoms similar to Alzheimer’s disease – a gene very similar to one found in humans.

Some of McKeown’s recent work focuses on understanding gene networks that control sexual behavior. Research on the topic is often contradictory. Some scientists suggest that the fruitless gene, active only in males, controls courtship and sexual receptivity by repressing female behavior and activating male behavior. Other scientists have found that a web of interacting genes control courtship and receptivity. McKeown wanted to settle the debate.

McKeown suspected that multiple genes shape behavior and that doublesex played a role. But experimenting with doublesex is difficult. When both copies of the gene are removed – a powerful way to test gene function – flies have the physical features of both sexes. As a result, these mutant females are not recognized by normal males and these mutant males are not recognized by normal females – and none of the mutants can mate. So this makes it difficult for scientists to categorize their behavior as gender appropriate.

So McKeown raised flies missing one of two copies of doublesex, a process that didn’t completely remove the gene’s influence but drastically reduced it. The result: Flies’ sexual equipment was intact, but, theoretically, their sexual behavior might be different. McKeown and graduate student Troy Shirangi also reduced the activity of the fruitless gene as well as one called “retained.”

Shirangi and McKeown did, indeed, see a doublesex influence. Doublesex helped the males act macho during courting – chasing females, shaking their wings to “sing” love songs, tapping or licking their intended mates. In females, doublesex worked together with the gene retained to make them more receptive to this wooing; Females with two good copies of the gene were more likely to listen to love songs and to copulate. Interestingly, reducing the activity of doublesex or retained also allowed females to court like males, even though they lack the male-behavior-inducing activity of fruitless.

By manipulating fruitless and retained in other experiments, McKeown and his team found critical interactions, or overlaps, in the “mind” and “body” pathways. Retained acts in both sexes, repressing male courting behavior and boosting female receptivity. Fruitless and doublesex act together, as a switch system, to affect this sexual behavior.

“The big story is the crossover between the ‘mind’ and ‘body’ pathways,” McKeown said. “If sexual behaviors are genetically controlled in humans, I expect that this system would be just as much, if not more, complicated.”

Shirangi, a graduate student in the Department of Molecular Biology, Cell Biology and Biochemistry at Brown, was lead author of the Nature Genetics article. Barbara Taylor, an associate professor of zoology at Oregon State University, also took part in the fly research.

The National Science Foundation and the National Institutes of Health funded the work.

Editors: Brown University has a fiber link television studio available for domestic and international live and taped interviews and maintains an ISDN line for radio interviews. For more information, call the Office of Media Relations at (401) 863-2476.

Wendy Lawton | EurekAlert!
Further information:
http://www.brown.edu

Further reports about: McKeown courtship doublesex fruitless sexual

More articles from Life Sciences:

nachricht Tag it EASI – a new method for accurate protein analysis
20.06.2018 | Max-Planck-Institut für Biochemie

nachricht How to track and trace a protein: Nanosensors monitor intracellular deliveries
19.06.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Intelligent maps will help robots navigate in your home

20.06.2018 | Information Technology

An unlikely marriage among oxides

20.06.2018 | Materials Sciences

Tag it EASI – a new method for accurate protein analysis

20.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>