Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mutation Causes Heart Muscle Disorder - Researchers in Berlin und Boston Detect Genetic Defect

04.12.2006
A mutation in a gene responsible for the adhesion of adjacent cells of the heart is the cause of a potentially lethal heart muscle disorder.

The evidence has been provided by a team of researchers including Dr. Arnd Heuser of the Max Delbrück Center of Molecular Medicine (MDC) Berlin-Buch, Germany, Dr. Eva R. Plovie of the Massachusetts General Hospital (MGH) in Boston, USA, and Professor Ludwig Thierfelder (MDC and Helios Klinikum Berlin/Charité) and Dr. Brenda Gerull (MDC).

The scientists searched selectively mutations in the gene Desmocollin-2 (DSC2) in a pool of 88 unrelated patients suffering from arrhythmogenic right ventricular cardiomyopathy (ARVC) and discovered a mutation that causes this cardiomyopathy. By switching off the gene in zebrafish embryos, they demonstrated that DSC2 is essential for normal mycardial structure and function. Their work has now been published in the American Journal of Human Genetics (Vol. 79, pp. 1081-1088, 2006).*

Heart-muscle disorders (cardiomyopathies) are prevalent worldwide but their origins are widely unknown. During the course of the arrhythmogenic right ventricular cardiomyopathy (ARVC), ?brofatty and connective tissue replacement takes place in the right ventricular myocardium. This leads to a dysfunction of the heart-muscle which can result in arrhythmia and cardiac insufficiency. The consequence is an increased risk of sudden cardiac death, even in young people.

... more about:
»ARVC »DSC2 »Mutation

The heart of an adult beats about seventy-times in a minute or around 100,000 times a day. It is, therefore, exposed to high mechanical strains. Desmosomes are mechanical structures that keep the cells bound together as if connected with push buttons so that they will not rip while beating.

In collaboration with researchers from the University Hospital of Münster, Dr. Heuser (MDC) and Dr. Plovie (MGH) searched for genetic defects in the desmosomes within a pool of 88 unrelated patients. They searched for a mutation in the gene that carries the information for the protein Desmocollin-2 (DSC2) which is part of the desmosome structure. Mutations of other desmosomal proteins have previously been detected for ARVC. Therefore, the Berlin- and Boston-based researchers assumed that mutations in DSC2 could result in ARVC, too.

Dr. Heuser and Dr. Plovie could now demonstrate that the mutation in DSC2 gene results in a reduced DSC2 protein which causes ARVC. Furthermore, the switch off of the DSC2 in zebrafish embryos showed that DSC2 is necessary for normal embryonic cardiac development. In an adult organism, a lack of DSC2 leads to disordered heart contraction and difficulties in the conduction system of the heart.

Barbara Bachtler | alfa
Further information:
http://www.mdc-berlin.de
http://www.mdc-berlin.de/englisch/about_the_mdc/public_relations/e_index.htm

Further reports about: ARVC DSC2 Mutation

More articles from Life Sciences:

nachricht Historical rainfall levels are significant in carbon emissions from soil
30.05.2017 | University of Texas at Austin

nachricht 3D printer inks from the woods
30.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Method of Characterizing Graphene

Scientists have developed a new method of characterizing graphene’s properties without applying disruptive electrical contacts, allowing them to investigate both the resistance and quantum capacitance of graphene and other two-dimensional materials. Researchers from the Swiss Nanoscience Institute and the University of Basel’s Department of Physics reported their findings in the journal Physical Review Applied.

Graphene consists of a single layer of carbon atoms. It is transparent, harder than diamond and stronger than steel, yet flexible, and a significantly better...

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

3D printer inks from the woods

30.05.2017 | Life Sciences

How circadian clocks communicate with each other

30.05.2017 | Life Sciences

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible

30.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>