Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New three-dimensional imaging method paves way for several research fields

04.12.2006
A new method for 3D imaging and quantification of biological preparations ten times larger than the limit for the traditional confocal microscope is now being presented by researchers from Umeå University in Sweden in the journal Nature Methods.

Knowledge of the three-dimensional organization of tissues and organ is of key importance in most life sciences.

Traditional biological imaging techniques are limited by several factors, such as the optical properties of the tissue and access to biological markers. A major challenge in this connection has been the creation of three-dimensional images of the expressions of specific genes and proteins in large biological preparations. It has been equally complicated to try to measure the mass/volume of cells or structures that express a specific protein in a specific organ, for instance.

The study now presented, under the direction of Associate Professor Ulf Ahlgren at the Umeå Center for Molecular Medicine (UCMM, www.umu.se/ucmm), in collaboration with Dr. James Sharpe at the Centre for Genomic Regulation in Barcelona and Professor Dan Holmberg at the Department of Medical Bioscience, Umeå University, describes an elaboration of the technology for optical projection tomography (OPT) that the two former researchers helped describe in the journal Science four years ago. The scientists have combined improvements in sample processing and tomographic data processing to develop a new method that make it possible to create 3D images of specifically dyed preparation that are one centimeter in size, of organs from adult mice and rats, for example.

... more about:
»UMU »insulin-producing cell »method »specific

Moreover, the authors describe how the new method can be used to automatically measure the number and volume of specifically dyed structures in large biological preparations. The technique requires no specially developed biological marker substances; instead, it makes use of antibodies that are in routine use in many research laboratories. The article exemplifies the potential of the technology by following the degradation of insulin-producing cells in intact pancreases from a mouse model for type-1 diabetes. In this case they demonstrate a direct connection between the volume of the remaining insulin-producing cells and the development of symptoms of diabetes.

The researchers project that it will be possible to use their method to address a great number of medical and biological issues. This may include such diverse fields as the formation of blood vessels in tumor models, the analysis of biopsies taken from patients (in cirrhosis of the liver, for instance), and autoimmune infiltration processes.

Other co-authors of the article are Tomas Alanentalo, Amir Asayesh, Christina Lorén (all UCMM) and Harris Morrison (MRC, HGU, Edinburgh).

For more information, please contact Ulf Ahlgren by e-mail at ulf.ahlgren@ucmm.umu.se or by phone at +46 90-785 44 34 or cell phone at +46 70-220 92 28.

Image 1: (hjarna.jpg): Virtual clipping of OPT imaged intact mouse brain (2 days post coitum) labeled for neuronal marker Isl1.

Image 2 (bukspottkortlar.jpg)
OPT imaged adult pancreata from a wild-type (left) and overt diabetic NOD mouse (right) labeled for insulin.
Image 3. (bukspottkortel.jpg)
Virtual clipping of OPT imaged intact adult mouse pancreas (wild-type) labeled for insulin.
Images:
http://www.umu.se/medfak/aktuellt/bilder/hjarna.jpg (image)
http://www.umu.se/medfak/aktuellt/bilder/bukspottkortlar.jpg (image)
http://www.umu.se/medfak/aktuellt/bilder/bukspottkortel.jpg(image)

Bertil Born | idw
Further information:
http://www.vr.se

Further reports about: UMU insulin-producing cell method specific

More articles from Life Sciences:

nachricht Cnidarians remotely control bacteria
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Immune cells may heal bleeding brain after strokes
21.09.2017 | NIH/National Institute of Neurological Disorders and Stroke

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>