Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New three-dimensional imaging method paves way for several research fields

04.12.2006
A new method for 3D imaging and quantification of biological preparations ten times larger than the limit for the traditional confocal microscope is now being presented by researchers from Umeå University in Sweden in the journal Nature Methods.

Knowledge of the three-dimensional organization of tissues and organ is of key importance in most life sciences.

Traditional biological imaging techniques are limited by several factors, such as the optical properties of the tissue and access to biological markers. A major challenge in this connection has been the creation of three-dimensional images of the expressions of specific genes and proteins in large biological preparations. It has been equally complicated to try to measure the mass/volume of cells or structures that express a specific protein in a specific organ, for instance.

The study now presented, under the direction of Associate Professor Ulf Ahlgren at the Umeå Center for Molecular Medicine (UCMM, www.umu.se/ucmm), in collaboration with Dr. James Sharpe at the Centre for Genomic Regulation in Barcelona and Professor Dan Holmberg at the Department of Medical Bioscience, Umeå University, describes an elaboration of the technology for optical projection tomography (OPT) that the two former researchers helped describe in the journal Science four years ago. The scientists have combined improvements in sample processing and tomographic data processing to develop a new method that make it possible to create 3D images of specifically dyed preparation that are one centimeter in size, of organs from adult mice and rats, for example.

... more about:
»UMU »insulin-producing cell »method »specific

Moreover, the authors describe how the new method can be used to automatically measure the number and volume of specifically dyed structures in large biological preparations. The technique requires no specially developed biological marker substances; instead, it makes use of antibodies that are in routine use in many research laboratories. The article exemplifies the potential of the technology by following the degradation of insulin-producing cells in intact pancreases from a mouse model for type-1 diabetes. In this case they demonstrate a direct connection between the volume of the remaining insulin-producing cells and the development of symptoms of diabetes.

The researchers project that it will be possible to use their method to address a great number of medical and biological issues. This may include such diverse fields as the formation of blood vessels in tumor models, the analysis of biopsies taken from patients (in cirrhosis of the liver, for instance), and autoimmune infiltration processes.

Other co-authors of the article are Tomas Alanentalo, Amir Asayesh, Christina Lorén (all UCMM) and Harris Morrison (MRC, HGU, Edinburgh).

For more information, please contact Ulf Ahlgren by e-mail at ulf.ahlgren@ucmm.umu.se or by phone at +46 90-785 44 34 or cell phone at +46 70-220 92 28.

Image 1: (hjarna.jpg): Virtual clipping of OPT imaged intact mouse brain (2 days post coitum) labeled for neuronal marker Isl1.

Image 2 (bukspottkortlar.jpg)
OPT imaged adult pancreata from a wild-type (left) and overt diabetic NOD mouse (right) labeled for insulin.
Image 3. (bukspottkortel.jpg)
Virtual clipping of OPT imaged intact adult mouse pancreas (wild-type) labeled for insulin.
Images:
http://www.umu.se/medfak/aktuellt/bilder/hjarna.jpg (image)
http://www.umu.se/medfak/aktuellt/bilder/bukspottkortlar.jpg (image)
http://www.umu.se/medfak/aktuellt/bilder/bukspottkortel.jpg(image)

Bertil Born | idw
Further information:
http://www.vr.se

Further reports about: UMU insulin-producing cell method specific

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>