Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Cancer prognosis gene' found to control the fate of breast cells

01.12.2006
Scientists have discovered an unsuspected role for a gene known to be one of the best predictors of human breast cancer outcome.

The gene, called GATA-3, is in a family of genes that guides development of stem cells into mature cells. University of California, San Francisco researchers have now found that GATA-3 is also required for mature mammary cells to remain mature in the adult. In research focusing on mice mammary glands, they found that without GATA-3, mature cells revert to a less specialized, “undifferentiated” state characteristic of aggressive cancer.

The new finding suggests that this gene may play a key role in the development of breast cancer, the scientists report in the December 1 issue of the journal CELL.

Cancer researchers know that breast cancers with high GATA-3 expression have a good prognosis. The cancers tend to be well-differentiated – retaining estrogen receptors and other characteristics of normal mature breast cells. Cancers with low GATA-3 expression tend to be poorly differentiated, with a poor prognosis. The new research may explain why this is so.

... more about:
»GATA-3 »mammary »prognosis

“Perhaps the loss of GATA-3 and subsequent failure to maintain this mature state is what leads to loss of differentiation during cancer progression,” said Hosein Kouros-Mehr, PhD, a medical student at UCSF and lead author of the new study. “This gene is part of the instruction manual that controls how a stem cell can mature into a normal mammary cell and remain that way for its lifetime. The finding suggests that the differentiation, or maturity, of cells is a process that must be actively maintained throughout the lifetime of an organism.”

How GATA-3 controls cell fate, and its possible role in breast cancer is now the focus of the team's research.

The UCSF study is part of the work of the Bay Area Breast Cancer and the Environment Research Center, one of four centers funded by the National Cancer Institute and the National Institute of Environmental Health Sciences.

The UCSF scientists found that when the GATA-3 gene activity was knocked out in adult mice, the mammary ductal cells - the principal cell type in breast cancer - regressed to a less differentiated state, which is one of the hallmarks of invasive, metastatic cancer. The cells began to proliferate uncontrollably and then died within the ducts of the mammary gland, they reported.

Previously, little was known about the differentiation of the ductal cells, also known as luminal cells, which form the lining of the breast ducts that carry milk during lactation. The researchers carried out a screen of all genes active in the mammary ducts during puberty and found that GATA-3 was the most abundant transcription factor – a gene that directs the activation of other genes. They further found the GATA-3 protein in all luminal cells of mature mammary ducts, both in mice at puberty and in adult virgin mice.

“We are very excited because we now know that it is not enough for cells to become breast cells but they need an active program to remain in their specialized state and perhaps be kept from wandering off,” said Zena Werb, PhD, professor and vice chair of anatomy and senior author of the paper. “Maybe we should view cancer as telling us what cells become if they lose their ‘homesteading’ genes and then start wandering.”

The scientists hope that further investigation of the precise role of GATA-3 in breast cancer can identify new ways of understanding, diagnosing and treating the disease.

Wallace Ravven | EurekAlert!
Further information:
http://www.bcerc.org/index.htm
http://www.ucsf.edu

Further reports about: GATA-3 mammary prognosis

More articles from Life Sciences:

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

nachricht Research reveals how order first appears in liquid crystals
23.05.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>