Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Einstein researchers discover how a key dietary vitamin is absorbed

01.12.2006
Researchers at the Albert Einstein College of Medicine of Yeshiva University have found the mechanism by which the B vitamin folate—a crucially important nutrient—is absorbed by the intestinal tract.

Their findings, published in the December 1 issue of the journal Cell, solve a longstanding mystery as to how folates in the diet are absorbed and pave the way for a genetic test that can save the lives of infants who lack the ability to absorb folate.

“We can’t live without folate,” says Dr. I. David Goldman, the study’s senior author and director of the Albert Einstein Cancer Center. “Adequate folate in our diet --and our small intestine’s ability to absorb it -- are crucial for synthesizing DNA and other important constituents of our bodies. Folate deficiency in the developing embryo can cause developmental nervous-system defects such as spina bifida. After birth, infants with folate deficiency can experience anemia, immune deficiency with severe infections, and neurological defects such as seizures and mental retardation. And in adults, folate deficiency has been associated with an increased risk of certain cancers.”

A water-soluble vitamin such as folate can’t readily penetrate the fatty membrane of cells. It needs a specialized uptake mechanism so it can be absorbed by intestinal cells and ultimately enter the bloodstream. The Einstein researchers identified the membrane protein, dubbed PCFT/HCP1, that transports folate molecules from the small intestine’s acidic milieu into intestinal cells. A study published last year aroused considerable scientific fanfare when it reported that this protein ferried heme linked to iron (which becomes hemoglobin when coupled with the protein globin) into intestinal cells. But the Einstein study shows that folate transport is the primary function of this protein.

... more about:
»Vitamin »absorbed »deficiency »folate »intestinal

The Einstein study also showed that a mutation in the PCFT/HCP1 gene is responsible for hereditary folate malabsorption, a rare but potentially fatal disorder. Infants born with this condition must be treated with high doses of folate to prevent severe anemia and neurological problems that can be fatal or cause irreversible damage. The researchers made the link between mutations in the folate transporter gene and hereditary folate malabsorption by studying a Puerto Rican family in which two children were affected by the condition.

“Families at risk for hereditary folate malabsorption now have a genetic test that can quickly detect this condition before birth or in their newborns,” says Dr. Goldman. “Rapid diagnosis of this disease will insure that these infants will be started on folate supplementation as soon as possible after birth.”

Karen Gardner | EurekAlert!
Further information:
http://www.aecom.yu.edu

Further reports about: Vitamin absorbed deficiency folate intestinal

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>