Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Einstein researchers discover how a key dietary vitamin is absorbed

01.12.2006
Researchers at the Albert Einstein College of Medicine of Yeshiva University have found the mechanism by which the B vitamin folate—a crucially important nutrient—is absorbed by the intestinal tract.

Their findings, published in the December 1 issue of the journal Cell, solve a longstanding mystery as to how folates in the diet are absorbed and pave the way for a genetic test that can save the lives of infants who lack the ability to absorb folate.

“We can’t live without folate,” says Dr. I. David Goldman, the study’s senior author and director of the Albert Einstein Cancer Center. “Adequate folate in our diet --and our small intestine’s ability to absorb it -- are crucial for synthesizing DNA and other important constituents of our bodies. Folate deficiency in the developing embryo can cause developmental nervous-system defects such as spina bifida. After birth, infants with folate deficiency can experience anemia, immune deficiency with severe infections, and neurological defects such as seizures and mental retardation. And in adults, folate deficiency has been associated with an increased risk of certain cancers.”

A water-soluble vitamin such as folate can’t readily penetrate the fatty membrane of cells. It needs a specialized uptake mechanism so it can be absorbed by intestinal cells and ultimately enter the bloodstream. The Einstein researchers identified the membrane protein, dubbed PCFT/HCP1, that transports folate molecules from the small intestine’s acidic milieu into intestinal cells. A study published last year aroused considerable scientific fanfare when it reported that this protein ferried heme linked to iron (which becomes hemoglobin when coupled with the protein globin) into intestinal cells. But the Einstein study shows that folate transport is the primary function of this protein.

... more about:
»Vitamin »absorbed »deficiency »folate »intestinal

The Einstein study also showed that a mutation in the PCFT/HCP1 gene is responsible for hereditary folate malabsorption, a rare but potentially fatal disorder. Infants born with this condition must be treated with high doses of folate to prevent severe anemia and neurological problems that can be fatal or cause irreversible damage. The researchers made the link between mutations in the folate transporter gene and hereditary folate malabsorption by studying a Puerto Rican family in which two children were affected by the condition.

“Families at risk for hereditary folate malabsorption now have a genetic test that can quickly detect this condition before birth or in their newborns,” says Dr. Goldman. “Rapid diagnosis of this disease will insure that these infants will be started on folate supplementation as soon as possible after birth.”

Karen Gardner | EurekAlert!
Further information:
http://www.aecom.yu.edu

Further reports about: Vitamin absorbed deficiency folate intestinal

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>