Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

P(acman) takes a bite out of deciphering Drosophila DNA

01.12.2006
P(acman) – a new method of introducing DNA into the genome of fruit flies or Drosophila – promises to transform the ability of scientists to study the structure and function of virtually all the fly’s genes, and the method may be applicable to other frequently studied organisms such as mice, said its Baylor College of Medicine developers in an article in the current issue of the journal Science.

“P(acman) overcomes a key limitation of currently available methods because it allows you to study large chunks of DNA in vivo,” said Dr. Hugo Bellen, professor of molecular and human genetics at Baylor College of Medicine and director of the program in developmental biology. He is also a Howard Hughes Medical Institute investigator. The new technique allows researchers to study large genes and even gene complexes in the fruit fly, which was not possible before.

P/phiC31 artificial chromosome for manipulation, or P(acman), combines three recently developed technologies: a specially designed bacterial artificial chromosome (BAC) that allows maintenance of large pieces of DNA in bacteria, recombineering that allows the manipulation of large pieces of DNA that can then be inserted into the genome of the fly at a specific site using phiC31-mediated transgenesis.

It is a new technique with far-reaching promise, said Bellen.

... more about:
»Bellen »DNA »acman »technique

P(acman) overcomes certain obstacles that have hampered research. It allows the cloning of large pieces of DNA to be used to transform the genome, and it permits that DNA to be inserted into specific places in the genome. Bellen credits the report’s first author, Koen J.T. Venken, a graduate student in the BCM Program in Developmental Biology, with putting the technologies together to come up with a new methodology in the field.

Current technology has certain problems for researchers seeking to understand the structure and function of genes, said Bellen. Often, when scientists breed flies that lack a particular gene and then try to put that gene back into the fly, it inserts itself randomly into the genetic blueprint.

In some cases, it makes too much protein, and in others, too little. In other instances, it may disrupt the message from another gene.

“You are really comparing apples and oranges when you do this,” said Bellen. The technique is also limited to small DNA chunks.

“Koen set out to develop a new transgenesis system using the three techniques,” said Bellen.

The bacterial artificial chromosome, or BAC, he used allows the scientist to maintain large chunks of DNA in the bacteria, but it is present in only one or few copies. However, the bacteria can be induced to produce many copies of the DNA when needed.

Koen then integrated a technique called “recombineering” into the strategy, which facilitates the scientist to clone large chunks of DNA and subsequently allows them to make specific mutations anywhere he or she wants in the gene.

The third technique allows the researcher to pinpoint where he or she wants to the mutant gene to go in the genetic blueprint of the fly, eliminating the apples-and-oranges problem. This third technique – phiC31 – works also in mouse and human cells, implying that this new technique could be used in those cells as well.

Ross Tomlin | EurekAlert!
Further information:
http://www.bcm.edu

Further reports about: Bellen DNA acman technique

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>