Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

P(acman) takes a bite out of deciphering Drosophila DNA

01.12.2006
P(acman) – a new method of introducing DNA into the genome of fruit flies or Drosophila – promises to transform the ability of scientists to study the structure and function of virtually all the fly’s genes, and the method may be applicable to other frequently studied organisms such as mice, said its Baylor College of Medicine developers in an article in the current issue of the journal Science.

“P(acman) overcomes a key limitation of currently available methods because it allows you to study large chunks of DNA in vivo,” said Dr. Hugo Bellen, professor of molecular and human genetics at Baylor College of Medicine and director of the program in developmental biology. He is also a Howard Hughes Medical Institute investigator. The new technique allows researchers to study large genes and even gene complexes in the fruit fly, which was not possible before.

P/phiC31 artificial chromosome for manipulation, or P(acman), combines three recently developed technologies: a specially designed bacterial artificial chromosome (BAC) that allows maintenance of large pieces of DNA in bacteria, recombineering that allows the manipulation of large pieces of DNA that can then be inserted into the genome of the fly at a specific site using phiC31-mediated transgenesis.

It is a new technique with far-reaching promise, said Bellen.

... more about:
»Bellen »DNA »acman »technique

P(acman) overcomes certain obstacles that have hampered research. It allows the cloning of large pieces of DNA to be used to transform the genome, and it permits that DNA to be inserted into specific places in the genome. Bellen credits the report’s first author, Koen J.T. Venken, a graduate student in the BCM Program in Developmental Biology, with putting the technologies together to come up with a new methodology in the field.

Current technology has certain problems for researchers seeking to understand the structure and function of genes, said Bellen. Often, when scientists breed flies that lack a particular gene and then try to put that gene back into the fly, it inserts itself randomly into the genetic blueprint.

In some cases, it makes too much protein, and in others, too little. In other instances, it may disrupt the message from another gene.

“You are really comparing apples and oranges when you do this,” said Bellen. The technique is also limited to small DNA chunks.

“Koen set out to develop a new transgenesis system using the three techniques,” said Bellen.

The bacterial artificial chromosome, or BAC, he used allows the scientist to maintain large chunks of DNA in the bacteria, but it is present in only one or few copies. However, the bacteria can be induced to produce many copies of the DNA when needed.

Koen then integrated a technique called “recombineering” into the strategy, which facilitates the scientist to clone large chunks of DNA and subsequently allows them to make specific mutations anywhere he or she wants in the gene.

The third technique allows the researcher to pinpoint where he or she wants to the mutant gene to go in the genetic blueprint of the fly, eliminating the apples-and-oranges problem. This third technique – phiC31 – works also in mouse and human cells, implying that this new technique could be used in those cells as well.

Ross Tomlin | EurekAlert!
Further information:
http://www.bcm.edu

Further reports about: Bellen DNA acman technique

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>