Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

P(acman) takes a bite out of deciphering Drosophila DNA

01.12.2006
P(acman) – a new method of introducing DNA into the genome of fruit flies or Drosophila – promises to transform the ability of scientists to study the structure and function of virtually all the fly’s genes, and the method may be applicable to other frequently studied organisms such as mice, said its Baylor College of Medicine developers in an article in the current issue of the journal Science.

“P(acman) overcomes a key limitation of currently available methods because it allows you to study large chunks of DNA in vivo,” said Dr. Hugo Bellen, professor of molecular and human genetics at Baylor College of Medicine and director of the program in developmental biology. He is also a Howard Hughes Medical Institute investigator. The new technique allows researchers to study large genes and even gene complexes in the fruit fly, which was not possible before.

P/phiC31 artificial chromosome for manipulation, or P(acman), combines three recently developed technologies: a specially designed bacterial artificial chromosome (BAC) that allows maintenance of large pieces of DNA in bacteria, recombineering that allows the manipulation of large pieces of DNA that can then be inserted into the genome of the fly at a specific site using phiC31-mediated transgenesis.

It is a new technique with far-reaching promise, said Bellen.

... more about:
»Bellen »DNA »acman »technique

P(acman) overcomes certain obstacles that have hampered research. It allows the cloning of large pieces of DNA to be used to transform the genome, and it permits that DNA to be inserted into specific places in the genome. Bellen credits the report’s first author, Koen J.T. Venken, a graduate student in the BCM Program in Developmental Biology, with putting the technologies together to come up with a new methodology in the field.

Current technology has certain problems for researchers seeking to understand the structure and function of genes, said Bellen. Often, when scientists breed flies that lack a particular gene and then try to put that gene back into the fly, it inserts itself randomly into the genetic blueprint.

In some cases, it makes too much protein, and in others, too little. In other instances, it may disrupt the message from another gene.

“You are really comparing apples and oranges when you do this,” said Bellen. The technique is also limited to small DNA chunks.

“Koen set out to develop a new transgenesis system using the three techniques,” said Bellen.

The bacterial artificial chromosome, or BAC, he used allows the scientist to maintain large chunks of DNA in the bacteria, but it is present in only one or few copies. However, the bacteria can be induced to produce many copies of the DNA when needed.

Koen then integrated a technique called “recombineering” into the strategy, which facilitates the scientist to clone large chunks of DNA and subsequently allows them to make specific mutations anywhere he or she wants in the gene.

The third technique allows the researcher to pinpoint where he or she wants to the mutant gene to go in the genetic blueprint of the fly, eliminating the apples-and-oranges problem. This third technique – phiC31 – works also in mouse and human cells, implying that this new technique could be used in those cells as well.

Ross Tomlin | EurekAlert!
Further information:
http://www.bcm.edu

Further reports about: Bellen DNA acman technique

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>