Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein shown to rally biological clock

01.12.2006
'Pony Express' protein

A biologist at Washington University in St. Louis and his collaborators have identified the factor in mammalian brain cells that keeps cells in synchrony so that functions like the wake-sleep cycle, hormone secretion and loco motor behaviors are coordinated daily over a 24-hour period.

Erik Herzog, Ph.D., Washington University associate professor of Biology in Arts & Sciences, Sara Aton, Ph.D., a graduate student in Herzog’s lab who is now a postdoctoral researcher at the University of Pennsylvania, James Huettner, Ph.D., associate professor in cell biology and physiology at the Washington

University School of Medicine, and Martin Straume, a biostatistician, have determined that VIP ¬– vasoactive intestinal polypeptide – is the rallying protein that signals the brain’s biological clock to coordinate daily rhythms in behavior and physiology.

... more about:
»GABA »Neuron »SCN »VIP

The finding clarifies the roles that both VIP and a neurotransmitter GABA play in synchronizing biological clocks, and sheds light on how mammals, in this case mice and rats. regulate circadian rhythm. Results were published in the Nov. 27- Dec. 1 online issue of the Proceedings of the National Academy of Sciences.

Neurons in the biological clock, an area called the suprachiasmatic nucleus (SCN), located at the base of the brain right across the optic nerve, keep 24-hour time and are normally highly synchronized. The SCN is composed of 10,000 neurons on one side of the hypothalamus, and 10,000 on the other. Together these neurons are intrinsic clocks in communication with each other to keep 24-hour time.

It had been thought that GABA was the prime candidate for the rallying role. All SCN neurons make this inhibitory neurotransmitter, and it had been shown that giving GABA daily at 8 a.m. to SCN cells synchronizes them.

“The surprise was that GABA was not needed,” said Herzog. “VIP synchronizes even when we block all GABA signaling. When we blocked GABA, synchrony was perfectly fine. Instead, the oscillations got bigger.”

Herzog likens VIP to the Pony Express rider telling all the SCN cells to synchronize their ; GABA, he says, is like the marshal that prevents he cells from being too active.

Herzog and Aton recorded neuron activity from the SCN using a multielectrode array with 60 electrodes upon which they place SCN cells, a “clock in a dish.” They also recorded gene expression in real-time using a bioluminescent reporter of gene activity.

Using drugs or genetic knock out mice, they negated the role of GABA and recorded the electrical activity of many neurons, what Herzog calls the “hands of the clock,” and the gene activities, “the cogs of the clock,” of many SCN cells.

They found that, without GABA, the cells marched together, but without VIP, they lost synchrony, indicating that VIP is the coordinator.

Tony Fitzpatrick | EurekAlert!
Further information:
http://www.wustl.edu

Further reports about: GABA Neuron SCN VIP

More articles from Life Sciences:

nachricht An evolutionary heads-up – The brain size advantage
22.05.2015 | Veterinärmedizinische Universität Wien

nachricht Endocrine disrupting chemicals in baby teethers
21.05.2015 | Goethe-Universität Frankfurt am Main

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

Im Focus: Into the ice – RV Polarstern opens the arctic season by setting course for Spitsbergen

On Tuesday, 19 May 2015 the research icebreaker Polarstern will leave its home port in Bremerhaven, setting a course for the Arctic. Led by Dr Ilka Peeken from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) a team of 53 researchers from 11 countries will investigate the effects of climate change in the Arctic, from the surface ice floes down to the seafloor.

RV Polarstern will enter the sea-ice zone north of Spitsbergen. Covering two shallow regions on their way to deeper waters, the scientists on board will focus...

Im Focus: Gel filled with nanosponges cleans up MRSA infections

Nanoengineers at the University of California, San Diego developed a gel filled with toxin-absorbing nanosponges that could lead to an effective treatment for skin and wound infections caused by MRSA (methicillin-resistant Staphylococcus aureus), an antibiotic-resistant bacteria. This "nanosponge-hydrogel" minimized the growth of skin lesions on mice infected with MRSA - without the use of antibiotics. The researchers recently published their findings online in Advanced Materials.

To make the nanosponge-hydrogel, the team mixed nanosponges, which are nanoparticles that absorb dangerous toxins produced by MRSA, E. coli and other...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Mesoporous Particles for the Development of Drug Delivery System Safe to Human Bodies

22.05.2015 | Materials Sciences

Computing at the Speed of Light

22.05.2015 | Information Technology

Development of Gold Nanoparticles That Control Osteogenic Differentiation of Stem Cells

22.05.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>