Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists work to identify genes that contribute to early heart attack risk

01.12.2006
Scientists at Wake Forest University Baptist Medical Center and colleagues at four other medical centers have launched a $10 million multi-year study to identify genes that may contribute to early atherosclerosis.

"If we can identify people in their teens and early adult life who have a genetic predisposition to develop atherosclerosis, we can manage their risk factors for heart disease and stroke sooner and more aggressively," said David Herrington, M.D., M.H.S., professor of cardiology at Wake Forest and lead investigator.

Other participating centers are Cedars Sinai Medical Center, Louisiana State University (LSU) Health Sciences Center in New Orleans, the University of Texas Health Science Center at Houston and the University of Washington.

Funded by the National Heart, Lung, and Blood Institute (NHLBI) of the National Institutes of Health, the study, known as SEA (SNPs and Extent of Atherosclerosis), will build on research from two previously funded NHLBI projects. The study will also benefit from a unique collaboration with Perlegen Sciences Inc., a company that specializes in techniques to uncover the genetic causes of diseases.

... more about:
»Health »atherosclerosis »genetic variant

Atherosclerosis is the development of fatty deposits in arteries that leads to blood clot formation, angina, heart attack and stroke. This process can begin in childhood and early adult life. Doctors have known that genetic factors contribute to risk for early atherosclerosis but the exact genes involved are not yet known.

"We hope the SEA study will give us new understanding about the causes of atherosclerosis, including the discovery of new genes and new pathways that could guide the development of new drug treatments that may be more effective in preventing the development of heart disease," said Herrington.

The researchers will take advantage of data from two large-scale studies: LSU Health Sciences Center’s Pathobiological Determinants of Atherosclerosis in Youth (PDAY) study and the Multi-Ethnic Study of Atherosclerosis (MESA).

Using DNA data from the PDAY study, the scientists will work to pinpoint specific atherosclerosis genes. This autopsy study included about 3,000 young people, ages 15 to 34, who died from accidental causes, suicide and homicide. This study, which started in 1985, provided some of the best evidence that the process of atherosclerosis begins in childhood and adolescence. Using the latest technology, scientists will screen tissue samples from the study looking for genetic variants that may predispose individuals to develop early atherosclerosis.

"Perhaps the most remarkable thing about this study is the large number of genetic variants that we’re going to study," said Herrington. "Using special technology provided by Perlegen Sciences, we will examine more than 2 million different gene variations."

In part two of the study, the scientists will work to confirm their findings by determining if any genetic factors associated with early atherosclerosis in PDAY subjects also predict atherosclerosis in living participants of the $68 million MESA study. This 10-year multi-center study began in 2000 and is working to find new ways to detect heart disease before any symptoms occur.

The MESA study examined about 6,800 men and women, ages 45 to 84, who had no known heart disease. These participants were screened for atherosclerosis using non-invasive imaging tests. There are six study sites, including Wake Forest.

The researchers said it will take about five years to complete the SEA study.

Karen Richardson | EurekAlert!
Further information:
http://www.wfubmc.edu

Further reports about: Health atherosclerosis genetic variant

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>