Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists work to identify genes that contribute to early heart attack risk

01.12.2006
Scientists at Wake Forest University Baptist Medical Center and colleagues at four other medical centers have launched a $10 million multi-year study to identify genes that may contribute to early atherosclerosis.

"If we can identify people in their teens and early adult life who have a genetic predisposition to develop atherosclerosis, we can manage their risk factors for heart disease and stroke sooner and more aggressively," said David Herrington, M.D., M.H.S., professor of cardiology at Wake Forest and lead investigator.

Other participating centers are Cedars Sinai Medical Center, Louisiana State University (LSU) Health Sciences Center in New Orleans, the University of Texas Health Science Center at Houston and the University of Washington.

Funded by the National Heart, Lung, and Blood Institute (NHLBI) of the National Institutes of Health, the study, known as SEA (SNPs and Extent of Atherosclerosis), will build on research from two previously funded NHLBI projects. The study will also benefit from a unique collaboration with Perlegen Sciences Inc., a company that specializes in techniques to uncover the genetic causes of diseases.

... more about:
»Health »atherosclerosis »genetic variant

Atherosclerosis is the development of fatty deposits in arteries that leads to blood clot formation, angina, heart attack and stroke. This process can begin in childhood and early adult life. Doctors have known that genetic factors contribute to risk for early atherosclerosis but the exact genes involved are not yet known.

"We hope the SEA study will give us new understanding about the causes of atherosclerosis, including the discovery of new genes and new pathways that could guide the development of new drug treatments that may be more effective in preventing the development of heart disease," said Herrington.

The researchers will take advantage of data from two large-scale studies: LSU Health Sciences Center’s Pathobiological Determinants of Atherosclerosis in Youth (PDAY) study and the Multi-Ethnic Study of Atherosclerosis (MESA).

Using DNA data from the PDAY study, the scientists will work to pinpoint specific atherosclerosis genes. This autopsy study included about 3,000 young people, ages 15 to 34, who died from accidental causes, suicide and homicide. This study, which started in 1985, provided some of the best evidence that the process of atherosclerosis begins in childhood and adolescence. Using the latest technology, scientists will screen tissue samples from the study looking for genetic variants that may predispose individuals to develop early atherosclerosis.

"Perhaps the most remarkable thing about this study is the large number of genetic variants that we’re going to study," said Herrington. "Using special technology provided by Perlegen Sciences, we will examine more than 2 million different gene variations."

In part two of the study, the scientists will work to confirm their findings by determining if any genetic factors associated with early atherosclerosis in PDAY subjects also predict atherosclerosis in living participants of the $68 million MESA study. This 10-year multi-center study began in 2000 and is working to find new ways to detect heart disease before any symptoms occur.

The MESA study examined about 6,800 men and women, ages 45 to 84, who had no known heart disease. These participants were screened for atherosclerosis using non-invasive imaging tests. There are six study sites, including Wake Forest.

The researchers said it will take about five years to complete the SEA study.

Karen Richardson | EurekAlert!
Further information:
http://www.wfubmc.edu

Further reports about: Health atherosclerosis genetic variant

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>