Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Major Wellcome Trust award to take science from the bench to the bedside

01.12.2006
Clinicians and scientists studying how a variety of human diseases arise have received a major boost today.

The Cambridge Institute for Medical Research, University of Cambridge, where researchers look at the underlying molecular and cellular mechanisms behind disease, has been awarded one of the prestigious Wellcome Trust Strategic Awards. The £4 million grant will enable the CIMR to stay at the leading edge of research into how diseases arise and to play a key role training tomorrow’s academic doctors and medical scientists.

The Institute is a multidisciplinary research centre whose outstanding feature is the interweaving of clinical medicine with molecular and cell biology. Since it opened in 1998, it has led key research into how viruses evade our immune system, genetic susceptibility to diabetes and progress towards novel treatments for Alzheimer's and Huntington's disease.

"What we are striving to provide in CIMR is an effective interface between basic and clinical science to underpin our goal of determining and understanding the molecular mechanisms of disease," says Professor Paul Luzio, Director of CIMR. "With the support of the Wellcome Trust we have attracted outstanding basic and clinical scientists to the Institute. The Strategic Award will underpin our scientific infrastructure, help us bring scientifically trained clinicians back into research after their specialist clinical training.

... more about:
»CIMR »Clinical »clinicians »disorder

"Our Institute is not disease-specific but our focus over the next few years will provide insights into the molecular pathology of many diseases and help to identify novel therapeutic targets. CIMR will continue to be a great place to work for those whose primary interests are focused on disease and for some who are more interested in basic cellular mechanisms which, when they malfunction, result in disease. "

As well as facilitating collaboration between clinicians and basic scientists, the Institute also aims to play a key role in training tomorrow’s academic doctors and medical scientists. The strategic award will allow CIMR to run "Next Generation Fellowships", intended to attract clinicians into research at the conclusion of their clinical training. It will also establish a four-year PhD programme to provide basic scientists with an opportunity to undertake PhD training and explore interdisciplinary research opportunities.

"Training clinicians to undertake basic biomedical science is fundamentally important for the future of biomedicine in the UK," says Dr Mark Walport, Director of the Wellcome Trust. “Building strong collaborative teams of clinicians and basic scientists, as CIMR does, is therefore essential."

Research at CIMR aims to understand a variety of human illnesses at a molecular and cellular level. To do this, research teams look at how our genes are constructed and operate, how molecules move around and function in cells, how proteins interact physically and how our bodies defend us against infection.

Key researchers at the Cambridge Institute for Medical Research include:

Professor Fiona Karet

As a renal physician Professor Karet is particularly interested in how the kidney does its normal 'housekeeping' work - maintaining steady levels of many different substances such as salt and other ions in the body. To get at these important functions at the molecular level, her lab has been studying inherited disorders. One advantage of CIMR's location is that she combines her research activities with running a specialist clinic in Addenbrooke's Hospital, where patients with inherited kidney problems and their families are seen.

Professor Paul Lehner

Professor Lehner studies interactions between microbes and the immune system. His group identified two viral gene products from the Kaposi's sarcoma-associated herpes virus which down regulate important cell surface receptors, including MHC class I molecules. Other work has focused on the important role of the receptor CCR5 in controlling infection by mycobacteria, such as TB.

Professor David Lomas

Professor Lomas has elucidated the molecular mechanism underlying a new class of disease that he has called the serpinopathies. The actual disease depends on the serpin that is affected but can lead to conditions such as cirrhosis, thrombosis and the early-onset dementia FENIB. His work has only been possible because of close links with basic scientists, which have allowed the use of biophysics, electron microscopy, crystallography, cell biology and fly models to provide fundamental insights into the mechanisms of disease and to develop novel strategies for therapeutic intervention.

Professor Margaret Robinson

Professor Margaret Robinson is a Wellcome Trust Principal Research Fellow studying how proteins are transported between the various organelles of the cell by vesicles, which bud from one membrane and fuse with another. Professor Robinsons' team have discovered protein complexes that are involved in this process and when disrupted by mutation cause the genetic disorder Hermansky Pudlak syndrome.

Professor David Rubinsztein

Professor Rubinsztein's lab studies conditions like Huntington's disease that are caused by mutant proteins that form aggregates inside cells. The team uses a range of approaches to elucidate the different ways that such mutations result in pathology. For an in-depth Wellcome Science article see http://www.wellcome.ac.uk/doc_WTX033583.html

Professor John Todd

Using an integrated combination of genetics, statistics, genome informatics and data mining, and gene expression and functional studies, Professor Todd's group aims to discover the molecular bases for the common autoimmune disease type 1 (insulin-dependent) diabetes.

Dr Geoff Woods

There are many rare genetic disorders which affect the development of the nervous system: the nerves, the spinal cord and the brain. Dr Woods has been trying to find some of the genes that cause these disorders. Whilst each condition is rare, collectively they are a significant problem in child health, for example causing mental retardation, fits and cerebral palsy. Working at the CIMR has allowed Dr Woods to start to achieve this marriage of clinical genetics and basic science. For an in-depth Wellcome Science article see http://www.wellcome.ac.uk/doc_WTD023441.html

Craig Brierley | alfa
Further information:
http://www.wellcome.ac.uk

Further reports about: CIMR Clinical clinicians disorder

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>