Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Major Wellcome Trust award to take science from the bench to the bedside

Clinicians and scientists studying how a variety of human diseases arise have received a major boost today.

The Cambridge Institute for Medical Research, University of Cambridge, where researchers look at the underlying molecular and cellular mechanisms behind disease, has been awarded one of the prestigious Wellcome Trust Strategic Awards. The £4 million grant will enable the CIMR to stay at the leading edge of research into how diseases arise and to play a key role training tomorrow’s academic doctors and medical scientists.

The Institute is a multidisciplinary research centre whose outstanding feature is the interweaving of clinical medicine with molecular and cell biology. Since it opened in 1998, it has led key research into how viruses evade our immune system, genetic susceptibility to diabetes and progress towards novel treatments for Alzheimer's and Huntington's disease.

"What we are striving to provide in CIMR is an effective interface between basic and clinical science to underpin our goal of determining and understanding the molecular mechanisms of disease," says Professor Paul Luzio, Director of CIMR. "With the support of the Wellcome Trust we have attracted outstanding basic and clinical scientists to the Institute. The Strategic Award will underpin our scientific infrastructure, help us bring scientifically trained clinicians back into research after their specialist clinical training.

... more about:
»CIMR »Clinical »clinicians »disorder

"Our Institute is not disease-specific but our focus over the next few years will provide insights into the molecular pathology of many diseases and help to identify novel therapeutic targets. CIMR will continue to be a great place to work for those whose primary interests are focused on disease and for some who are more interested in basic cellular mechanisms which, when they malfunction, result in disease. "

As well as facilitating collaboration between clinicians and basic scientists, the Institute also aims to play a key role in training tomorrow’s academic doctors and medical scientists. The strategic award will allow CIMR to run "Next Generation Fellowships", intended to attract clinicians into research at the conclusion of their clinical training. It will also establish a four-year PhD programme to provide basic scientists with an opportunity to undertake PhD training and explore interdisciplinary research opportunities.

"Training clinicians to undertake basic biomedical science is fundamentally important for the future of biomedicine in the UK," says Dr Mark Walport, Director of the Wellcome Trust. “Building strong collaborative teams of clinicians and basic scientists, as CIMR does, is therefore essential."

Research at CIMR aims to understand a variety of human illnesses at a molecular and cellular level. To do this, research teams look at how our genes are constructed and operate, how molecules move around and function in cells, how proteins interact physically and how our bodies defend us against infection.

Key researchers at the Cambridge Institute for Medical Research include:

Professor Fiona Karet

As a renal physician Professor Karet is particularly interested in how the kidney does its normal 'housekeeping' work - maintaining steady levels of many different substances such as salt and other ions in the body. To get at these important functions at the molecular level, her lab has been studying inherited disorders. One advantage of CIMR's location is that she combines her research activities with running a specialist clinic in Addenbrooke's Hospital, where patients with inherited kidney problems and their families are seen.

Professor Paul Lehner

Professor Lehner studies interactions between microbes and the immune system. His group identified two viral gene products from the Kaposi's sarcoma-associated herpes virus which down regulate important cell surface receptors, including MHC class I molecules. Other work has focused on the important role of the receptor CCR5 in controlling infection by mycobacteria, such as TB.

Professor David Lomas

Professor Lomas has elucidated the molecular mechanism underlying a new class of disease that he has called the serpinopathies. The actual disease depends on the serpin that is affected but can lead to conditions such as cirrhosis, thrombosis and the early-onset dementia FENIB. His work has only been possible because of close links with basic scientists, which have allowed the use of biophysics, electron microscopy, crystallography, cell biology and fly models to provide fundamental insights into the mechanisms of disease and to develop novel strategies for therapeutic intervention.

Professor Margaret Robinson

Professor Margaret Robinson is a Wellcome Trust Principal Research Fellow studying how proteins are transported between the various organelles of the cell by vesicles, which bud from one membrane and fuse with another. Professor Robinsons' team have discovered protein complexes that are involved in this process and when disrupted by mutation cause the genetic disorder Hermansky Pudlak syndrome.

Professor David Rubinsztein

Professor Rubinsztein's lab studies conditions like Huntington's disease that are caused by mutant proteins that form aggregates inside cells. The team uses a range of approaches to elucidate the different ways that such mutations result in pathology. For an in-depth Wellcome Science article see

Professor John Todd

Using an integrated combination of genetics, statistics, genome informatics and data mining, and gene expression and functional studies, Professor Todd's group aims to discover the molecular bases for the common autoimmune disease type 1 (insulin-dependent) diabetes.

Dr Geoff Woods

There are many rare genetic disorders which affect the development of the nervous system: the nerves, the spinal cord and the brain. Dr Woods has been trying to find some of the genes that cause these disorders. Whilst each condition is rare, collectively they are a significant problem in child health, for example causing mental retardation, fits and cerebral palsy. Working at the CIMR has allowed Dr Woods to start to achieve this marriage of clinical genetics and basic science. For an in-depth Wellcome Science article see

Craig Brierley | alfa
Further information:

Further reports about: CIMR Clinical clinicians disorder

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>