Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Major Wellcome Trust award to take science from the bench to the bedside

01.12.2006
Clinicians and scientists studying how a variety of human diseases arise have received a major boost today.

The Cambridge Institute for Medical Research, University of Cambridge, where researchers look at the underlying molecular and cellular mechanisms behind disease, has been awarded one of the prestigious Wellcome Trust Strategic Awards. The £4 million grant will enable the CIMR to stay at the leading edge of research into how diseases arise and to play a key role training tomorrow’s academic doctors and medical scientists.

The Institute is a multidisciplinary research centre whose outstanding feature is the interweaving of clinical medicine with molecular and cell biology. Since it opened in 1998, it has led key research into how viruses evade our immune system, genetic susceptibility to diabetes and progress towards novel treatments for Alzheimer's and Huntington's disease.

"What we are striving to provide in CIMR is an effective interface between basic and clinical science to underpin our goal of determining and understanding the molecular mechanisms of disease," says Professor Paul Luzio, Director of CIMR. "With the support of the Wellcome Trust we have attracted outstanding basic and clinical scientists to the Institute. The Strategic Award will underpin our scientific infrastructure, help us bring scientifically trained clinicians back into research after their specialist clinical training.

... more about:
»CIMR »Clinical »clinicians »disorder

"Our Institute is not disease-specific but our focus over the next few years will provide insights into the molecular pathology of many diseases and help to identify novel therapeutic targets. CIMR will continue to be a great place to work for those whose primary interests are focused on disease and for some who are more interested in basic cellular mechanisms which, when they malfunction, result in disease. "

As well as facilitating collaboration between clinicians and basic scientists, the Institute also aims to play a key role in training tomorrow’s academic doctors and medical scientists. The strategic award will allow CIMR to run "Next Generation Fellowships", intended to attract clinicians into research at the conclusion of their clinical training. It will also establish a four-year PhD programme to provide basic scientists with an opportunity to undertake PhD training and explore interdisciplinary research opportunities.

"Training clinicians to undertake basic biomedical science is fundamentally important for the future of biomedicine in the UK," says Dr Mark Walport, Director of the Wellcome Trust. “Building strong collaborative teams of clinicians and basic scientists, as CIMR does, is therefore essential."

Research at CIMR aims to understand a variety of human illnesses at a molecular and cellular level. To do this, research teams look at how our genes are constructed and operate, how molecules move around and function in cells, how proteins interact physically and how our bodies defend us against infection.

Key researchers at the Cambridge Institute for Medical Research include:

Professor Fiona Karet

As a renal physician Professor Karet is particularly interested in how the kidney does its normal 'housekeeping' work - maintaining steady levels of many different substances such as salt and other ions in the body. To get at these important functions at the molecular level, her lab has been studying inherited disorders. One advantage of CIMR's location is that she combines her research activities with running a specialist clinic in Addenbrooke's Hospital, where patients with inherited kidney problems and their families are seen.

Professor Paul Lehner

Professor Lehner studies interactions between microbes and the immune system. His group identified two viral gene products from the Kaposi's sarcoma-associated herpes virus which down regulate important cell surface receptors, including MHC class I molecules. Other work has focused on the important role of the receptor CCR5 in controlling infection by mycobacteria, such as TB.

Professor David Lomas

Professor Lomas has elucidated the molecular mechanism underlying a new class of disease that he has called the serpinopathies. The actual disease depends on the serpin that is affected but can lead to conditions such as cirrhosis, thrombosis and the early-onset dementia FENIB. His work has only been possible because of close links with basic scientists, which have allowed the use of biophysics, electron microscopy, crystallography, cell biology and fly models to provide fundamental insights into the mechanisms of disease and to develop novel strategies for therapeutic intervention.

Professor Margaret Robinson

Professor Margaret Robinson is a Wellcome Trust Principal Research Fellow studying how proteins are transported between the various organelles of the cell by vesicles, which bud from one membrane and fuse with another. Professor Robinsons' team have discovered protein complexes that are involved in this process and when disrupted by mutation cause the genetic disorder Hermansky Pudlak syndrome.

Professor David Rubinsztein

Professor Rubinsztein's lab studies conditions like Huntington's disease that are caused by mutant proteins that form aggregates inside cells. The team uses a range of approaches to elucidate the different ways that such mutations result in pathology. For an in-depth Wellcome Science article see http://www.wellcome.ac.uk/doc_WTX033583.html

Professor John Todd

Using an integrated combination of genetics, statistics, genome informatics and data mining, and gene expression and functional studies, Professor Todd's group aims to discover the molecular bases for the common autoimmune disease type 1 (insulin-dependent) diabetes.

Dr Geoff Woods

There are many rare genetic disorders which affect the development of the nervous system: the nerves, the spinal cord and the brain. Dr Woods has been trying to find some of the genes that cause these disorders. Whilst each condition is rare, collectively they are a significant problem in child health, for example causing mental retardation, fits and cerebral palsy. Working at the CIMR has allowed Dr Woods to start to achieve this marriage of clinical genetics and basic science. For an in-depth Wellcome Science article see http://www.wellcome.ac.uk/doc_WTD023441.html

Craig Brierley | alfa
Further information:
http://www.wellcome.ac.uk

Further reports about: CIMR Clinical clinicians disorder

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>