Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Major Wellcome Trust award to take science from the bench to the bedside

01.12.2006
Clinicians and scientists studying how a variety of human diseases arise have received a major boost today.

The Cambridge Institute for Medical Research, University of Cambridge, where researchers look at the underlying molecular and cellular mechanisms behind disease, has been awarded one of the prestigious Wellcome Trust Strategic Awards. The £4 million grant will enable the CIMR to stay at the leading edge of research into how diseases arise and to play a key role training tomorrow’s academic doctors and medical scientists.

The Institute is a multidisciplinary research centre whose outstanding feature is the interweaving of clinical medicine with molecular and cell biology. Since it opened in 1998, it has led key research into how viruses evade our immune system, genetic susceptibility to diabetes and progress towards novel treatments for Alzheimer's and Huntington's disease.

"What we are striving to provide in CIMR is an effective interface between basic and clinical science to underpin our goal of determining and understanding the molecular mechanisms of disease," says Professor Paul Luzio, Director of CIMR. "With the support of the Wellcome Trust we have attracted outstanding basic and clinical scientists to the Institute. The Strategic Award will underpin our scientific infrastructure, help us bring scientifically trained clinicians back into research after their specialist clinical training.

... more about:
»CIMR »Clinical »clinicians »disorder

"Our Institute is not disease-specific but our focus over the next few years will provide insights into the molecular pathology of many diseases and help to identify novel therapeutic targets. CIMR will continue to be a great place to work for those whose primary interests are focused on disease and for some who are more interested in basic cellular mechanisms which, when they malfunction, result in disease. "

As well as facilitating collaboration between clinicians and basic scientists, the Institute also aims to play a key role in training tomorrow’s academic doctors and medical scientists. The strategic award will allow CIMR to run "Next Generation Fellowships", intended to attract clinicians into research at the conclusion of their clinical training. It will also establish a four-year PhD programme to provide basic scientists with an opportunity to undertake PhD training and explore interdisciplinary research opportunities.

"Training clinicians to undertake basic biomedical science is fundamentally important for the future of biomedicine in the UK," says Dr Mark Walport, Director of the Wellcome Trust. “Building strong collaborative teams of clinicians and basic scientists, as CIMR does, is therefore essential."

Research at CIMR aims to understand a variety of human illnesses at a molecular and cellular level. To do this, research teams look at how our genes are constructed and operate, how molecules move around and function in cells, how proteins interact physically and how our bodies defend us against infection.

Key researchers at the Cambridge Institute for Medical Research include:

Professor Fiona Karet

As a renal physician Professor Karet is particularly interested in how the kidney does its normal 'housekeeping' work - maintaining steady levels of many different substances such as salt and other ions in the body. To get at these important functions at the molecular level, her lab has been studying inherited disorders. One advantage of CIMR's location is that she combines her research activities with running a specialist clinic in Addenbrooke's Hospital, where patients with inherited kidney problems and their families are seen.

Professor Paul Lehner

Professor Lehner studies interactions between microbes and the immune system. His group identified two viral gene products from the Kaposi's sarcoma-associated herpes virus which down regulate important cell surface receptors, including MHC class I molecules. Other work has focused on the important role of the receptor CCR5 in controlling infection by mycobacteria, such as TB.

Professor David Lomas

Professor Lomas has elucidated the molecular mechanism underlying a new class of disease that he has called the serpinopathies. The actual disease depends on the serpin that is affected but can lead to conditions such as cirrhosis, thrombosis and the early-onset dementia FENIB. His work has only been possible because of close links with basic scientists, which have allowed the use of biophysics, electron microscopy, crystallography, cell biology and fly models to provide fundamental insights into the mechanisms of disease and to develop novel strategies for therapeutic intervention.

Professor Margaret Robinson

Professor Margaret Robinson is a Wellcome Trust Principal Research Fellow studying how proteins are transported between the various organelles of the cell by vesicles, which bud from one membrane and fuse with another. Professor Robinsons' team have discovered protein complexes that are involved in this process and when disrupted by mutation cause the genetic disorder Hermansky Pudlak syndrome.

Professor David Rubinsztein

Professor Rubinsztein's lab studies conditions like Huntington's disease that are caused by mutant proteins that form aggregates inside cells. The team uses a range of approaches to elucidate the different ways that such mutations result in pathology. For an in-depth Wellcome Science article see http://www.wellcome.ac.uk/doc_WTX033583.html

Professor John Todd

Using an integrated combination of genetics, statistics, genome informatics and data mining, and gene expression and functional studies, Professor Todd's group aims to discover the molecular bases for the common autoimmune disease type 1 (insulin-dependent) diabetes.

Dr Geoff Woods

There are many rare genetic disorders which affect the development of the nervous system: the nerves, the spinal cord and the brain. Dr Woods has been trying to find some of the genes that cause these disorders. Whilst each condition is rare, collectively they are a significant problem in child health, for example causing mental retardation, fits and cerebral palsy. Working at the CIMR has allowed Dr Woods to start to achieve this marriage of clinical genetics and basic science. For an in-depth Wellcome Science article see http://www.wellcome.ac.uk/doc_WTD023441.html

Craig Brierley | alfa
Further information:
http://www.wellcome.ac.uk

Further reports about: CIMR Clinical clinicians disorder

More articles from Life Sciences:

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>