Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Major Wellcome Trust award to take science from the bench to the bedside

01.12.2006
Clinicians and scientists studying how a variety of human diseases arise have received a major boost today.

The Cambridge Institute for Medical Research, University of Cambridge, where researchers look at the underlying molecular and cellular mechanisms behind disease, has been awarded one of the prestigious Wellcome Trust Strategic Awards. The £4 million grant will enable the CIMR to stay at the leading edge of research into how diseases arise and to play a key role training tomorrow’s academic doctors and medical scientists.

The Institute is a multidisciplinary research centre whose outstanding feature is the interweaving of clinical medicine with molecular and cell biology. Since it opened in 1998, it has led key research into how viruses evade our immune system, genetic susceptibility to diabetes and progress towards novel treatments for Alzheimer's and Huntington's disease.

"What we are striving to provide in CIMR is an effective interface between basic and clinical science to underpin our goal of determining and understanding the molecular mechanisms of disease," says Professor Paul Luzio, Director of CIMR. "With the support of the Wellcome Trust we have attracted outstanding basic and clinical scientists to the Institute. The Strategic Award will underpin our scientific infrastructure, help us bring scientifically trained clinicians back into research after their specialist clinical training.

... more about:
»CIMR »Clinical »clinicians »disorder

"Our Institute is not disease-specific but our focus over the next few years will provide insights into the molecular pathology of many diseases and help to identify novel therapeutic targets. CIMR will continue to be a great place to work for those whose primary interests are focused on disease and for some who are more interested in basic cellular mechanisms which, when they malfunction, result in disease. "

As well as facilitating collaboration between clinicians and basic scientists, the Institute also aims to play a key role in training tomorrow’s academic doctors and medical scientists. The strategic award will allow CIMR to run "Next Generation Fellowships", intended to attract clinicians into research at the conclusion of their clinical training. It will also establish a four-year PhD programme to provide basic scientists with an opportunity to undertake PhD training and explore interdisciplinary research opportunities.

"Training clinicians to undertake basic biomedical science is fundamentally important for the future of biomedicine in the UK," says Dr Mark Walport, Director of the Wellcome Trust. “Building strong collaborative teams of clinicians and basic scientists, as CIMR does, is therefore essential."

Research at CIMR aims to understand a variety of human illnesses at a molecular and cellular level. To do this, research teams look at how our genes are constructed and operate, how molecules move around and function in cells, how proteins interact physically and how our bodies defend us against infection.

Key researchers at the Cambridge Institute for Medical Research include:

Professor Fiona Karet

As a renal physician Professor Karet is particularly interested in how the kidney does its normal 'housekeeping' work - maintaining steady levels of many different substances such as salt and other ions in the body. To get at these important functions at the molecular level, her lab has been studying inherited disorders. One advantage of CIMR's location is that she combines her research activities with running a specialist clinic in Addenbrooke's Hospital, where patients with inherited kidney problems and their families are seen.

Professor Paul Lehner

Professor Lehner studies interactions between microbes and the immune system. His group identified two viral gene products from the Kaposi's sarcoma-associated herpes virus which down regulate important cell surface receptors, including MHC class I molecules. Other work has focused on the important role of the receptor CCR5 in controlling infection by mycobacteria, such as TB.

Professor David Lomas

Professor Lomas has elucidated the molecular mechanism underlying a new class of disease that he has called the serpinopathies. The actual disease depends on the serpin that is affected but can lead to conditions such as cirrhosis, thrombosis and the early-onset dementia FENIB. His work has only been possible because of close links with basic scientists, which have allowed the use of biophysics, electron microscopy, crystallography, cell biology and fly models to provide fundamental insights into the mechanisms of disease and to develop novel strategies for therapeutic intervention.

Professor Margaret Robinson

Professor Margaret Robinson is a Wellcome Trust Principal Research Fellow studying how proteins are transported between the various organelles of the cell by vesicles, which bud from one membrane and fuse with another. Professor Robinsons' team have discovered protein complexes that are involved in this process and when disrupted by mutation cause the genetic disorder Hermansky Pudlak syndrome.

Professor David Rubinsztein

Professor Rubinsztein's lab studies conditions like Huntington's disease that are caused by mutant proteins that form aggregates inside cells. The team uses a range of approaches to elucidate the different ways that such mutations result in pathology. For an in-depth Wellcome Science article see http://www.wellcome.ac.uk/doc_WTX033583.html

Professor John Todd

Using an integrated combination of genetics, statistics, genome informatics and data mining, and gene expression and functional studies, Professor Todd's group aims to discover the molecular bases for the common autoimmune disease type 1 (insulin-dependent) diabetes.

Dr Geoff Woods

There are many rare genetic disorders which affect the development of the nervous system: the nerves, the spinal cord and the brain. Dr Woods has been trying to find some of the genes that cause these disorders. Whilst each condition is rare, collectively they are a significant problem in child health, for example causing mental retardation, fits and cerebral palsy. Working at the CIMR has allowed Dr Woods to start to achieve this marriage of clinical genetics and basic science. For an in-depth Wellcome Science article see http://www.wellcome.ac.uk/doc_WTD023441.html

Craig Brierley | alfa
Further information:
http://www.wellcome.ac.uk

Further reports about: CIMR Clinical clinicians disorder

More articles from Life Sciences:

nachricht Bolstering fat cells offers potential new leukemia treatment
17.10.2017 | McMaster University

nachricht Ocean atmosphere rife with microbes
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>