Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Night of the living enzyme

30.11.2006
Nano-chambers mimic living cells to squeeze new activity from stale, defunct proteins

Inactive enzymes entombed in tiny honeycomb-shaped holes in silica can spring to life, scientists at the Department of Energy’s Pacific Northwest National Laboratory have found.

The discovery came after salvaging enzymes that had been in a refrigerator long past their expiration date. Enzymes are proteins that are not actually alive but come from living cells and perform chemical conversions.

To the research team’s surprise, enzymes that should have fizzled months before perked right up when entrapped in a nanomaterial called functionalized mesoporous silica, or FMS. The result points the way for exploiting these enzyme traps in food processing, decontamination, biosensor design and any other pursuit that requires controlling catalysts and sustaining their activity.

... more about:
»FMS »Pore »activity »author »enzyme

“There’s a school of thought that the reason enzymes work better in cells than in solution is because the concentration of enzymes surrounded by other biomolecules in cells is about 1,000 to 10,000 time more than in standard biochemistry lab conditions,” said Eric Ackerman, PNNL chief scientist and senior author of a related study that appears today in the journal Nanotechnology. “This crowding is thought to stabilize and keep enzymes active.”

The silica-spun FMS pores, hexagons about 30 nanometers in diameter spread across a sliver of material, mimic the crowding of cells. Ackerman, lead author Chenghong Lei and colleagues said crowding induces an unfolded, free-floating protein to refold; upon refolding, it reactivates and becomes capable of catalyzing thousands of reactions a second.

The FMS is made first, and the enzymes are added later. This is important, the authors said, because other schemes for entrapping enzymes usually incorporate the material and enzymes in one harsh mixture that can cripple enzyme function forever.

In this study, the authors reported having “functionalized” the silica pores by lining them with compounds that varied depending on the enzyme to be ensnared—amine and carboxyl groups carrying charges opposite that of three common, off-the-shelf biocatalysts: glucose oxidase (GOX), glucose isomerase (GI) and organophosphorus hydrolase (OPH).

Picture an enzyme in solution, floating unfolded like a mop head suspended in a water bucket. When that enzyme comes into contact with a pore, the protein is pulled into place by the oppositely charged FMS and squeezed into active shape inside the pore. So loaded, the pore is now open for business; substances in the solution that come into contact with the enzyme can now be catalyzed into the desired product. For example, GI turns glucose to fructose, and standard tests for enzyme activity confirmed that FMS-GI was as potent or better at making fructose as enzyme in solution. OPH activity doubled, while GOX activity varied from 30 percent to 160 percent, suggesting that the enzyme’s orientation in the pore is important.

“It could be that in some cases the active site, the part of the enzyme that needs to be in contact with the chemical to be converted, was pointing the wrong way and pressed tightly against the walls of the pore,” Ackerman said.

To show that the enzymes were trapped inside the FMS pores, the team stained the protein-FMS complex with gold nanoparticles and documented the enzyme-in-pore complex through electron microscopy. A spectroscopic analysis of the proteins squeezed into their active conformation turned up no new folds, evidence that they had neatly refolded rather than been forcibly wadded into the pore.

Ackerman said that this new understanding combined with new cell-free techniques—making hundreds of designer enzymes a day with components derived from cells—will speed the development of task-specific enzymes. This could lead to “enzyme-based molecular machines in nanomaterials that carry out complex biological reactions to produce energy or remediate toxic pollutants.”

Bill Cannon | EurekAlert!
Further information:
http://www.pnl.gov

Further reports about: FMS Pore activity author enzyme

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>