Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mode of seed dispersal greatly shapes placement of rainforest trees

30.11.2006
Finding could help explain how myriad plant species coexist in dense tropical forests

The apple might not fall far from the tree, but new research shows that how it falls might be what is most important in determining tree distribution across a forest. This study of the seed dispersal methods of rainforest trees demonstrates that these methods play a primary role in the organization of plant species in tropical forests.

Joshua B. Plotkin, a junior fellow in the Faculty of Arts and Sciences at Harvard University, and co-author Tristram Seidler will publish their results in the November issue of the journal Public Library of Science – Biology.

"Overall, there is a highly significant relationship between mode of seed dispersal and the clustering and arrangement of mature trees in the rainforest," says Plotkin. "This strong correlation demonstrates the long-term impact that these dispersal methods have on the organization of the large-scale forest."

... more about:
»Distribution »Plotkin »Rainforest »dispersal

In order to address the paradox of how so many rainforest species can coexist while competing for the same resources, Plotkin and Seidler studied a 50-hectare (500 meters by 1,000 meters) plot of lowland tropical forest at Pasoh Forest Reserve in peninsular Malaysia. They analyzed the dispersal mechanisms and spatial distributions of 561 tree species found in the plot. What they found was that species clustering was strongly correlated to the species' mode of seed dispersal.

Each species was categorized by one of five dispersal methods: ballistic (where seeds are liberated explosively), gravity, gyration (where the progression of seeds to the ground is slowed by the shape of the seeds), wind, and animal, the last of which was sub-categorized by fruit size. The animal subcategories were intended to distinguish among different sizes of animal that might disperse the fruit.

Plotkin and Seidler observed the distribution of individual tree species, determining an average spatial cluster size. Upon comparison across all species and seed dispersal categories, they determined that trees with ballistic dispersal methods tended to have the tightest cluster size, with trees dispersing their seeds via gravity, gyration, wind, and fruit of increasing size showing progressively more diffuse spatial distributions.

In addition to confirming the importance of seed dispersal, the results also supported some secondary hypotheses. Trees with smaller fruit tended to be less widely dispersed than trees bearing larger fruit, strengthening the argument that larger-bodied birds and mammals, in eating larger fruit, carry the seeds of these plants over larger distances. Wind-dispersed seeds were observed to have a surprisingly tight cluster radius, likely explained by the dense forest canopy stifling wind speeds.

These results are the first experimental evidence of their kind for an entire forest community, and are in agreement with the authors' additional results for a Panamanian jungle, suggesting the broader scope of these findings.

"Our results provide broad empirical evidence for the importance of dispersal mode in establishing the long-term community structure of tropical forests," Plotkin says, noting that it may not be possible to generalize his results for other types of forests.

Steve Bradt | EurekAlert!
Further information:
http://www.harvard.edu

Further reports about: Distribution Plotkin Rainforest dispersal

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>