Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mode of seed dispersal greatly shapes placement of rainforest trees

30.11.2006
Finding could help explain how myriad plant species coexist in dense tropical forests

The apple might not fall far from the tree, but new research shows that how it falls might be what is most important in determining tree distribution across a forest. This study of the seed dispersal methods of rainforest trees demonstrates that these methods play a primary role in the organization of plant species in tropical forests.

Joshua B. Plotkin, a junior fellow in the Faculty of Arts and Sciences at Harvard University, and co-author Tristram Seidler will publish their results in the November issue of the journal Public Library of Science – Biology.

"Overall, there is a highly significant relationship between mode of seed dispersal and the clustering and arrangement of mature trees in the rainforest," says Plotkin. "This strong correlation demonstrates the long-term impact that these dispersal methods have on the organization of the large-scale forest."

... more about:
»Distribution »Plotkin »Rainforest »dispersal

In order to address the paradox of how so many rainforest species can coexist while competing for the same resources, Plotkin and Seidler studied a 50-hectare (500 meters by 1,000 meters) plot of lowland tropical forest at Pasoh Forest Reserve in peninsular Malaysia. They analyzed the dispersal mechanisms and spatial distributions of 561 tree species found in the plot. What they found was that species clustering was strongly correlated to the species' mode of seed dispersal.

Each species was categorized by one of five dispersal methods: ballistic (where seeds are liberated explosively), gravity, gyration (where the progression of seeds to the ground is slowed by the shape of the seeds), wind, and animal, the last of which was sub-categorized by fruit size. The animal subcategories were intended to distinguish among different sizes of animal that might disperse the fruit.

Plotkin and Seidler observed the distribution of individual tree species, determining an average spatial cluster size. Upon comparison across all species and seed dispersal categories, they determined that trees with ballistic dispersal methods tended to have the tightest cluster size, with trees dispersing their seeds via gravity, gyration, wind, and fruit of increasing size showing progressively more diffuse spatial distributions.

In addition to confirming the importance of seed dispersal, the results also supported some secondary hypotheses. Trees with smaller fruit tended to be less widely dispersed than trees bearing larger fruit, strengthening the argument that larger-bodied birds and mammals, in eating larger fruit, carry the seeds of these plants over larger distances. Wind-dispersed seeds were observed to have a surprisingly tight cluster radius, likely explained by the dense forest canopy stifling wind speeds.

These results are the first experimental evidence of their kind for an entire forest community, and are in agreement with the authors' additional results for a Panamanian jungle, suggesting the broader scope of these findings.

"Our results provide broad empirical evidence for the importance of dispersal mode in establishing the long-term community structure of tropical forests," Plotkin says, noting that it may not be possible to generalize his results for other types of forests.

Steve Bradt | EurekAlert!
Further information:
http://www.harvard.edu

Further reports about: Distribution Plotkin Rainforest dispersal

More articles from Life Sciences:

nachricht Molecular microscopy illuminates molecular motor motion
26.07.2017 | Penn State

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>