Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ancient predator had strongest bite of any fish, rivaling bite of large alligators and T. rex

30.11.2006
Scientists recreate jaw mechanism of the most formidable fish ever

It could bite a shark in two. It might have been the first “king of the beasts.” And it could teach scientists a lot about humans, because it is in the sister group of all jawed vertebrates.

Dunkleosteus terrelli lived 400 million years ago, grew up to 33 feet long and weighed up to four tons. Scientist have known for years that it was a dominant predator, but new embargoed research to be published in the Royal Society journal Biology Letters on November 29 reveals that the force of this predator’s bite was remarkably powerful: 1,100pounds. The bladed dentition focused the bite force into a small area, the fang tip, at an incredible force of 8,000pounds per square inch.

Even more surprising is the fact that this fish could also open its mouth very quickly—in just one fiftieth of a second—which created a strong suction force, pulling fast prey into its mouth. Usually a fish has either a powerful bite or a fast bite, but not both.

... more about:
»Predator »strongest »vertebrate

“The most interesting part of this work for me was discovering that this heavily armored fish was both fast during jaw opening and quite powerful during jaw closing,” said Mark Westneat, Curator of Fishes at The Field Museum and co-author of the paper. “This is possible due to the unique engineering design of its skull and different muscles used for opening and closing. And it made this fish into one of the first true apex predators seen in the vertebrate fossil record.” This formidable fish was a placoderms, a diverse group of armored fishes that dominated aquatic ecosystems during the Devonian, from 415 million to 360 million years ago. Dunkleosteus’ bladed jaws suggest that it was among the first vertebrates to use rapid mouth opening and a powerful bite to capture and fragment evasive prey prior to ingestion.

To determine the bite force, scientists used the fossilized skull of a Dunkleosteus terrelli to recreate the musculature of the ancient fish. This biomechanical model showed the jaw’s force and motion, and revealed a highly kinetic skull driven by a unique mechanism based on four rotational joints working in harmony. The extinct fish had the strongest bite of any fish ever, and one of the strongest bites of any animal, rivaling the bites of large alligators and Tyrannosaurus rex.

Thus Dunkleosteus was able to feast on armored aquatic animals that also lived during the Devonian, including sharks, arthropods, ammonoids, and others protected by cuticle, calcium carbonate, or dermal bone.

“Dunkleosteus was able to devour anything in its environment,” said Philip Anderson, at the Department of Geophysical Sciences at the University of Chicago and lead author of the research. The bladed jaws, capable of ripping apart prey larger than its own mouth, is a feature sharks didn’t develop until 100 million years later.

“Overall, this study shows how useful mechanical engineering theory can be in studying the behavior of fossil animals,” he added. “We cannot actually watch these animals feed or interact, but we can understand the range of possible behaviors by examining how the preserved parts are shaped and connected to each other.”

Greg Borzo | EurekAlert!
Further information:
http://www.fieldmuseum.org

Further reports about: Predator strongest vertebrate

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>