Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ancient predator had strongest bite of any fish, rivaling bite of large alligators and T. rex

30.11.2006
Scientists recreate jaw mechanism of the most formidable fish ever

It could bite a shark in two. It might have been the first “king of the beasts.” And it could teach scientists a lot about humans, because it is in the sister group of all jawed vertebrates.

Dunkleosteus terrelli lived 400 million years ago, grew up to 33 feet long and weighed up to four tons. Scientist have known for years that it was a dominant predator, but new embargoed research to be published in the Royal Society journal Biology Letters on November 29 reveals that the force of this predator’s bite was remarkably powerful: 1,100pounds. The bladed dentition focused the bite force into a small area, the fang tip, at an incredible force of 8,000pounds per square inch.

Even more surprising is the fact that this fish could also open its mouth very quickly—in just one fiftieth of a second—which created a strong suction force, pulling fast prey into its mouth. Usually a fish has either a powerful bite or a fast bite, but not both.

... more about:
»Predator »strongest »vertebrate

“The most interesting part of this work for me was discovering that this heavily armored fish was both fast during jaw opening and quite powerful during jaw closing,” said Mark Westneat, Curator of Fishes at The Field Museum and co-author of the paper. “This is possible due to the unique engineering design of its skull and different muscles used for opening and closing. And it made this fish into one of the first true apex predators seen in the vertebrate fossil record.” This formidable fish was a placoderms, a diverse group of armored fishes that dominated aquatic ecosystems during the Devonian, from 415 million to 360 million years ago. Dunkleosteus’ bladed jaws suggest that it was among the first vertebrates to use rapid mouth opening and a powerful bite to capture and fragment evasive prey prior to ingestion.

To determine the bite force, scientists used the fossilized skull of a Dunkleosteus terrelli to recreate the musculature of the ancient fish. This biomechanical model showed the jaw’s force and motion, and revealed a highly kinetic skull driven by a unique mechanism based on four rotational joints working in harmony. The extinct fish had the strongest bite of any fish ever, and one of the strongest bites of any animal, rivaling the bites of large alligators and Tyrannosaurus rex.

Thus Dunkleosteus was able to feast on armored aquatic animals that also lived during the Devonian, including sharks, arthropods, ammonoids, and others protected by cuticle, calcium carbonate, or dermal bone.

“Dunkleosteus was able to devour anything in its environment,” said Philip Anderson, at the Department of Geophysical Sciences at the University of Chicago and lead author of the research. The bladed jaws, capable of ripping apart prey larger than its own mouth, is a feature sharks didn’t develop until 100 million years later.

“Overall, this study shows how useful mechanical engineering theory can be in studying the behavior of fossil animals,” he added. “We cannot actually watch these animals feed or interact, but we can understand the range of possible behaviors by examining how the preserved parts are shaped and connected to each other.”

Greg Borzo | EurekAlert!
Further information:
http://www.fieldmuseum.org

Further reports about: Predator strongest vertebrate

More articles from Life Sciences:

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

Study shows how water could have flowed on 'cold and icy' ancient Mars

18.10.2017 | Physics and Astronomy

Navigational view of the brain thanks to powerful X-rays

18.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>