Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ancient predator had strongest bite of any fish, rivaling bite of large alligators and T. rex

30.11.2006
Scientists recreate jaw mechanism of the most formidable fish ever

It could bite a shark in two. It might have been the first “king of the beasts.” And it could teach scientists a lot about humans, because it is in the sister group of all jawed vertebrates.

Dunkleosteus terrelli lived 400 million years ago, grew up to 33 feet long and weighed up to four tons. Scientist have known for years that it was a dominant predator, but new embargoed research to be published in the Royal Society journal Biology Letters on November 29 reveals that the force of this predator’s bite was remarkably powerful: 1,100pounds. The bladed dentition focused the bite force into a small area, the fang tip, at an incredible force of 8,000pounds per square inch.

Even more surprising is the fact that this fish could also open its mouth very quickly—in just one fiftieth of a second—which created a strong suction force, pulling fast prey into its mouth. Usually a fish has either a powerful bite or a fast bite, but not both.

... more about:
»Predator »strongest »vertebrate

“The most interesting part of this work for me was discovering that this heavily armored fish was both fast during jaw opening and quite powerful during jaw closing,” said Mark Westneat, Curator of Fishes at The Field Museum and co-author of the paper. “This is possible due to the unique engineering design of its skull and different muscles used for opening and closing. And it made this fish into one of the first true apex predators seen in the vertebrate fossil record.” This formidable fish was a placoderms, a diverse group of armored fishes that dominated aquatic ecosystems during the Devonian, from 415 million to 360 million years ago. Dunkleosteus’ bladed jaws suggest that it was among the first vertebrates to use rapid mouth opening and a powerful bite to capture and fragment evasive prey prior to ingestion.

To determine the bite force, scientists used the fossilized skull of a Dunkleosteus terrelli to recreate the musculature of the ancient fish. This biomechanical model showed the jaw’s force and motion, and revealed a highly kinetic skull driven by a unique mechanism based on four rotational joints working in harmony. The extinct fish had the strongest bite of any fish ever, and one of the strongest bites of any animal, rivaling the bites of large alligators and Tyrannosaurus rex.

Thus Dunkleosteus was able to feast on armored aquatic animals that also lived during the Devonian, including sharks, arthropods, ammonoids, and others protected by cuticle, calcium carbonate, or dermal bone.

“Dunkleosteus was able to devour anything in its environment,” said Philip Anderson, at the Department of Geophysical Sciences at the University of Chicago and lead author of the research. The bladed jaws, capable of ripping apart prey larger than its own mouth, is a feature sharks didn’t develop until 100 million years later.

“Overall, this study shows how useful mechanical engineering theory can be in studying the behavior of fossil animals,” he added. “We cannot actually watch these animals feed or interact, but we can understand the range of possible behaviors by examining how the preserved parts are shaped and connected to each other.”

Greg Borzo | EurekAlert!
Further information:
http://www.fieldmuseum.org

Further reports about: Predator strongest vertebrate

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>