Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pure carbon nanotubes pass first in vivo test

30.11.2006
Nanotubes tracked in blood and liver: Study finds no adverse effects

In the first experiments of their kind, researchers at Rice University and The University of Texas M. D. Anderson Cancer Center have determined that carbon nanotubes injected directly into the bloodstream of research lab animals cause no immediate adverse health effects and circulate for more than one hour before they are removed by the liver.

The findings are from the first in vivo animal study of chemically unmodified carbon nanotubes, a revolutionary nanomaterial that many researchers hope will prove useful in diagnosing and treating disease. The research will appear in this week's online edition of the Proceedings of the National Academy of Sciences.

"We sampled tissues from a dozen organs, and found significant amounts of nanotubes only in the liver," said lead author Bruce Weisman, professor of chemistry. "The liver naturally removes drugs or compounds from the blood, so this is what we expected to find."

... more about:
»Carbon »Nanotubes »carbon nanotubes »liver

The study, which tracked where the nanotubes went within 24 hours of being injected, also revealed trace amounts of nanotubes in the kidneys – another common expulsion route for drugs. There was no evidence that nanotubes remained in other tissues in the body.

Nanotubes are hollow cylinders of pure carbon that measure just one nanometer in diameter – about the same width as a strand of DNA. Nanotubes have unique chemical and optical properties, and they have attracted intense interest from biomedical researchers.

"The early results are promising for anyone interested in using carbon nanotubes in biomedical applications," said co-author Dr. Steven Curley, professor of surgical oncology and chief of gastrointestinal tumor surgery at M. D. Anderson. "We are particularly pleased that the fluorescent effect remains intact in our application, because this makes it easier to see where the nanotubes end up, and it opens the door to some exciting diagnostic and therapeutic applications."

In a ground-breaking 2002 study, Weisman and colleagues at Rice, including the late Professor Richard Smalley, discovered that nanotubes fluoresce, or emit near infrared light. Because near-infrared light passes harmlessly into the body, biomedical researchers are keen to use carbon nanotubes for the noninvasive diagnosis and treatment of diseases such as cancer and atherosclerosis.

In the current study, Weisman, Curley and colleagues injected lab animals with water soluble single-walled carbon nanotubes. The nanotubes, whose biocompatible coating was displaced by proteins in the blood, continued to fluoresce in the animals.

"I still remember how excited we were when we confirmed that the tubes were fluorescing," said Paul Cherukuri, a doctoral degree candidate in Chemistry. The researchers used this fluorescence to track the nanotubes in the blood and image them in tissues under the microscope.

Cherukuri said Smalley initiated several follow-up projects shortly before his passing in 2005 from lymphoma. In one, researchers are working on methods that will allow nanotubes to circulate longer following injection, so that they can be more easily targeted to specific organs. In another, they are tracking the longer-term behavior and effects of nanotubes in research lab animals.

"This research grew out of Smalley’s vision, and he followed our progress and offered daily guidance, even from his hospital bed at M.D. Anderson," Cherukuri said. “Up to his very last day, he was simultaneously fighting his own battle with cancer and developing new ways to treat the disease that ultimately took his life. These new results are simply the first fruits of his final contributions in nanohealth research, and there are still more to come."

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu

Further reports about: Carbon Nanotubes carbon nanotubes liver

More articles from Life Sciences:

nachricht Bolstering fat cells offers potential new leukemia treatment
17.10.2017 | McMaster University

nachricht Ocean atmosphere rife with microbes
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>