Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pure carbon nanotubes pass first in vivo test

30.11.2006
Nanotubes tracked in blood and liver: Study finds no adverse effects

In the first experiments of their kind, researchers at Rice University and The University of Texas M. D. Anderson Cancer Center have determined that carbon nanotubes injected directly into the bloodstream of research lab animals cause no immediate adverse health effects and circulate for more than one hour before they are removed by the liver.

The findings are from the first in vivo animal study of chemically unmodified carbon nanotubes, a revolutionary nanomaterial that many researchers hope will prove useful in diagnosing and treating disease. The research will appear in this week's online edition of the Proceedings of the National Academy of Sciences.

"We sampled tissues from a dozen organs, and found significant amounts of nanotubes only in the liver," said lead author Bruce Weisman, professor of chemistry. "The liver naturally removes drugs or compounds from the blood, so this is what we expected to find."

... more about:
»Carbon »Nanotubes »carbon nanotubes »liver

The study, which tracked where the nanotubes went within 24 hours of being injected, also revealed trace amounts of nanotubes in the kidneys – another common expulsion route for drugs. There was no evidence that nanotubes remained in other tissues in the body.

Nanotubes are hollow cylinders of pure carbon that measure just one nanometer in diameter – about the same width as a strand of DNA. Nanotubes have unique chemical and optical properties, and they have attracted intense interest from biomedical researchers.

"The early results are promising for anyone interested in using carbon nanotubes in biomedical applications," said co-author Dr. Steven Curley, professor of surgical oncology and chief of gastrointestinal tumor surgery at M. D. Anderson. "We are particularly pleased that the fluorescent effect remains intact in our application, because this makes it easier to see where the nanotubes end up, and it opens the door to some exciting diagnostic and therapeutic applications."

In a ground-breaking 2002 study, Weisman and colleagues at Rice, including the late Professor Richard Smalley, discovered that nanotubes fluoresce, or emit near infrared light. Because near-infrared light passes harmlessly into the body, biomedical researchers are keen to use carbon nanotubes for the noninvasive diagnosis and treatment of diseases such as cancer and atherosclerosis.

In the current study, Weisman, Curley and colleagues injected lab animals with water soluble single-walled carbon nanotubes. The nanotubes, whose biocompatible coating was displaced by proteins in the blood, continued to fluoresce in the animals.

"I still remember how excited we were when we confirmed that the tubes were fluorescing," said Paul Cherukuri, a doctoral degree candidate in Chemistry. The researchers used this fluorescence to track the nanotubes in the blood and image them in tissues under the microscope.

Cherukuri said Smalley initiated several follow-up projects shortly before his passing in 2005 from lymphoma. In one, researchers are working on methods that will allow nanotubes to circulate longer following injection, so that they can be more easily targeted to specific organs. In another, they are tracking the longer-term behavior and effects of nanotubes in research lab animals.

"This research grew out of Smalley’s vision, and he followed our progress and offered daily guidance, even from his hospital bed at M.D. Anderson," Cherukuri said. “Up to his very last day, he was simultaneously fighting his own battle with cancer and developing new ways to treat the disease that ultimately took his life. These new results are simply the first fruits of his final contributions in nanohealth research, and there are still more to come."

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu

Further reports about: Carbon Nanotubes carbon nanotubes liver

More articles from Life Sciences:

nachricht Closing in on advanced prostate cancer
13.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Visualizing single molecules in whole cells with a new spin
13.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>