Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ProAcademia-magazine: Cooperation across three continents in neuroscience

30.11.2006
In the past twenty years, neuroscience has been developed from a collection of approaches to an independent discipline. Now, at the forefront of science, it is faced with a number of challenges.

Those challenges can only be answered by investing in high-quality, international research in the field. NEURO, the Research Programme on Neuroscience coordinated by the Academy of Finland, brings together top neuroscientists on three continents.

NEURO is an international, jointly funded research programme of three parties: the Academy of Finland, the Institute of Neuroscience, Mental Health and Addiction (INMHA) of the Canadian Institutes of Health Research, and the National Natural Science Foundation of China.

Why, of all countries, were China and Canada selected as partners?
"Both countries are known for their high level of research in the field of neuroscience. It's always nice to work together with Canadians, because their open way of operating suits us well. China, in turn, is a rising power in the field of neuroscience in the east. Many Chinese top neuroscientists have returned to their home country in recent years," says Programme Manager Mika Tirronen from the Academy of Finland.
... more about:
»Neuroscience »mechanism

The coordinators in Canada and China, too, believe that at the end of the day the cooperation will result in more than what each party could accomplish alone.

Assistant Director Astrid Eberhart of the Institute of Neurosciences, Mental Health and Addiction, Canadian Institutes of Health Research, says: "There's significant strength in the neurosciences in these three countries and the programme structure facilitates networking and encourages researcher mobility. The collaborative approach maximizes existing expertise and available funding and will provide unique opportunities for researcher training."

Lu Rongkai from the National Natural Science Foundation of China, states: "The programme has provided a totally new mechanism for NSFC to cooperate with partner organisations from other countries. Based on our previous successful experiences as well as on the strict international review, I'm confident that the Chinese-Finnish collaboration within the neuroscience programme will be another success."

Tools for early detection of neurodegenerative and psychiatric diseases

One of the Finnish-Chinese projects in the Research Programme on Neuroscience (NEURO) studies spontaneous brain activity and its changes. The primary goal of the consortium is to develop tools for the clinical detection of those changes.

Vesa Kiviniemi, one of the principal investigators of the research team from Oulu University Hospital, Department of Diagnostic Radiology in Finland, believes that their research findings could have a clear impact on the diagnoses and treatment of disorders, such as schizophrenia and Alzheimer's disease, which affect public health extensively.

The aim of the Finnish-Canadian research team, on the other hand, is to investigate the role of inflammation mechanisms in the onset of neuronal injury.

It is well known that a number of common nervous system diseases, for instance multiple sclerosis, are inflammation diseases. In addition, inflammation mechanisms play a key role in the pathogenetic mechanisms of Alzheimer's disease and Parkinson's disease.

The blood-brain barrier controls the entry of substances from the blood into the brain, thus protecting the central nervous system from the effects of harmful substances as well as inflammations. However, in multiple sclerosis, for instance, leukocytes penetrate the blood-brain barrier and cause the symptoms of the disease. In Alzheimer's disease and Parkinson's disease, in turn, certain resident cells of the brain are activated, thus causing neuroinflammation and, if unresolved, neuronal injury.

"Our aim in this project is to investigate the molecular mechanisms essential for leukocyte migration through the blood-brain barrier. When we get to know these mechanisms better, the next relevant question is how the migration of these cells could be prevented," explains Professor Heikki Rauvala from the University of Helsinki, Finland, one of the principal investigators of the project.

Read more on Research Programme on Neuroscience in Academy of Finland ProAcademia-magazine in the internet. Issue 2/2006 of ProAcademia magazine is available in electronic format in the internet www.aka.fi/publications (magazines - ProAcademia)

ProAcademia is the Academy of Finland's magazine in English, published twice a year. The subjects covered in the magazine include Academy-funded research, Finnish research and science policy and the international activities of the Academy of Finland.

Niko Rinta | alfa
Further information:
http://www.aka.fi
http://www.aka.fi/publications

Further reports about: Neuroscience mechanism

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>