Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improved cell therapy for cartilage repair

30.11.2006
Artificially cultured cartilage cells, grown outside of the body for reparing damaged tissue, prove to be different from original cartilage tissue.

Cell therapy may be successful, but the added tissue performs worse than the orginal. PhD student Jeanine Hendriks of UT’s Institute for Biomedical Technology (BMTI) has developed a better method. She adds primary cells, still ‘knowing’ how to form a cartilage matrix, to the cultured cells. This seems to be a promising technique for improving cell therapy results.

Cartilage has unique properties, thanks to a matrix of cells.

The ‘proteoglycanes’ within this matrix are capable of binding water: if cartilage is under pressure, this water is squeezed out, does pressure get lower again, the water is bound again as well. This improves the flexibility of cartilage substantially, and is one of its unique features. In existing cell therapy, cells from a biopt are cultured for some three weeks. After that, the cells are injected underneath a piece of cell membrane, and the defect is repaired. The cells form cartilage tissue.

... more about:
»Hendriks »Matrix »cartilage »cultured

Cell-to-Cell interaction

In clinical practice, this works, although the cells aren’t able to form the desired matrix structures: ‘they don’t know how to do that’. Jeanine Hendriks therefore investigated the possibilities of stimulating the cells to form a matrix. By mixing cultured cells with primary chrondocytes that haven’t been cultured yet, she is able to control the process. By allowing the primary and cultured cells to interact, a matrix will be formed. This is more than creating a more ideal growth environment. It is the cell-to-cell interaction that ‘does the trick’, according to Hendriks.

Tissue engineering in vivo

Her results are the starting point for a novel clinical procedure. Hendriks wants to seed the cells on a carrier, a so-called scaffold. This is the same technique that is used in tissue engineering, the main difference is that Hendriks wants to implant the scaffold immediately after seeding and let them grow in vivo, while in tissue engineering, cells usually are cultured in vitro.

The new technique is truly promising: after finishing her PhD work, Jeanine Hendriks wants to further develop the clinical procedures, within her own company CellCoTec.

Wiebe van der Veen | alfa
Further information:
http://www.utwente.nl/en

Further reports about: Hendriks Matrix cartilage cultured

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Supercomputing helps researchers understand Earth's interior

23.05.2017 | Earth Sciences

Study identifies RNA molecule that shields breast cancer stem cells from immune system

23.05.2017 | Life Sciences

Turmoil in sluggish electrons’ existence

23.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>