Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improved cell therapy for cartilage repair

30.11.2006
Artificially cultured cartilage cells, grown outside of the body for reparing damaged tissue, prove to be different from original cartilage tissue.

Cell therapy may be successful, but the added tissue performs worse than the orginal. PhD student Jeanine Hendriks of UT’s Institute for Biomedical Technology (BMTI) has developed a better method. She adds primary cells, still ‘knowing’ how to form a cartilage matrix, to the cultured cells. This seems to be a promising technique for improving cell therapy results.

Cartilage has unique properties, thanks to a matrix of cells.

The ‘proteoglycanes’ within this matrix are capable of binding water: if cartilage is under pressure, this water is squeezed out, does pressure get lower again, the water is bound again as well. This improves the flexibility of cartilage substantially, and is one of its unique features. In existing cell therapy, cells from a biopt are cultured for some three weeks. After that, the cells are injected underneath a piece of cell membrane, and the defect is repaired. The cells form cartilage tissue.

... more about:
»Hendriks »Matrix »cartilage »cultured

Cell-to-Cell interaction

In clinical practice, this works, although the cells aren’t able to form the desired matrix structures: ‘they don’t know how to do that’. Jeanine Hendriks therefore investigated the possibilities of stimulating the cells to form a matrix. By mixing cultured cells with primary chrondocytes that haven’t been cultured yet, she is able to control the process. By allowing the primary and cultured cells to interact, a matrix will be formed. This is more than creating a more ideal growth environment. It is the cell-to-cell interaction that ‘does the trick’, according to Hendriks.

Tissue engineering in vivo

Her results are the starting point for a novel clinical procedure. Hendriks wants to seed the cells on a carrier, a so-called scaffold. This is the same technique that is used in tissue engineering, the main difference is that Hendriks wants to implant the scaffold immediately after seeding and let them grow in vivo, while in tissue engineering, cells usually are cultured in vitro.

The new technique is truly promising: after finishing her PhD work, Jeanine Hendriks wants to further develop the clinical procedures, within her own company CellCoTec.

Wiebe van der Veen | alfa
Further information:
http://www.utwente.nl/en

Further reports about: Hendriks Matrix cartilage cultured

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>