Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improved cell therapy for cartilage repair

30.11.2006
Artificially cultured cartilage cells, grown outside of the body for reparing damaged tissue, prove to be different from original cartilage tissue.

Cell therapy may be successful, but the added tissue performs worse than the orginal. PhD student Jeanine Hendriks of UT’s Institute for Biomedical Technology (BMTI) has developed a better method. She adds primary cells, still ‘knowing’ how to form a cartilage matrix, to the cultured cells. This seems to be a promising technique for improving cell therapy results.

Cartilage has unique properties, thanks to a matrix of cells.

The ‘proteoglycanes’ within this matrix are capable of binding water: if cartilage is under pressure, this water is squeezed out, does pressure get lower again, the water is bound again as well. This improves the flexibility of cartilage substantially, and is one of its unique features. In existing cell therapy, cells from a biopt are cultured for some three weeks. After that, the cells are injected underneath a piece of cell membrane, and the defect is repaired. The cells form cartilage tissue.

... more about:
»Hendriks »Matrix »cartilage »cultured

Cell-to-Cell interaction

In clinical practice, this works, although the cells aren’t able to form the desired matrix structures: ‘they don’t know how to do that’. Jeanine Hendriks therefore investigated the possibilities of stimulating the cells to form a matrix. By mixing cultured cells with primary chrondocytes that haven’t been cultured yet, she is able to control the process. By allowing the primary and cultured cells to interact, a matrix will be formed. This is more than creating a more ideal growth environment. It is the cell-to-cell interaction that ‘does the trick’, according to Hendriks.

Tissue engineering in vivo

Her results are the starting point for a novel clinical procedure. Hendriks wants to seed the cells on a carrier, a so-called scaffold. This is the same technique that is used in tissue engineering, the main difference is that Hendriks wants to implant the scaffold immediately after seeding and let them grow in vivo, while in tissue engineering, cells usually are cultured in vitro.

The new technique is truly promising: after finishing her PhD work, Jeanine Hendriks wants to further develop the clinical procedures, within her own company CellCoTec.

Wiebe van der Veen | alfa
Further information:
http://www.utwente.nl/en

Further reports about: Hendriks Matrix cartilage cultured

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>