Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Detecting explosives with honeybees

30.11.2006
Laboratory experts develop method to train an air force of bomb-sniffing bees

Scientists at Los Alamos National Laboratory have developed a method for training the common honey bee to detect the explosives used in bombs. Based on knowledge of bee biology, the new techniques could become a leading tool in the fight against the use of improvised explosive devices, or IEDs, which present a critical vulnerability for American military troops abroad and is an emerging danger for civilians worldwide.

By studying bee behavior and testing and improving on technologies already on the market, Los Alamos scientists developed methods to harness the honey bee's exceptional olfactory sense where the bees' natural reaction to nectar, a proboscis extension reflex (sticking out their tongue), could be used to record an unmistakable response to a scent. Using Pavlovian training techniques common to bee research, they trained bees to give a positive detection response, via the proboscis extension reflex, when they were exposed to vapors from TNT, C4, TATP explosives and propellants.

According to Tim Haarmann, principal investigator for the Stealthy Insect Sensor Project, the project applies old knowledge to a pressing new problem. Haarmann said, "Scientists have long marveled at the honey bee's phenomenal sense of smell, which rivals that of dogs," said Haarmann. "But previous attempts to harness and understand this ability were scientifically unproven. With more knowledge, our team thought we could make use of this ability."

... more about:
»Security »explosive »method

The team that Haarmann put together began with research into why bees are such good detectors, going beyond merely demonstrating that bees can be used to identify the presence of explosives. By looking at such attributes as protein expression, the team sought to isolate genetic and physiological differences between those bees with good olfaction and those without. They also determined how well bees could detect explosives in the presence of potentially interfering agents, such as lotions, motor oil, or insect repellant. In addition, the team studied structural units in the honey bee's antenna and looked for biochemical and molecular mechanisms that could advance their ability to be trained and retain their training for longer periods of time.

Currently supported by a development grant from the Defense Advanced Research Projects Agency (DARPA), the Stealthy Insect Sensor Project is a collaboration of scientists and technicians from the Laboratory's Bioscience, Chemistry, and Environmental Protection divisions, including Kirsten McCabe and Robert Wingo.

Los Alamos National Laboratory is a multidisciplinary research institution engaged in strategic science on behalf of national security. The Laboratory is operated by a team composed of Bechtel National, the University of California, BWX Technologies, and Washington Group International for the Department of Energy's National Nuclear Security Administration.

Los Alamos enhances national security by ensuring the safety and reliability of the U.S. nuclear stockpile, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to energy, environment, infrastructure, health and global security concerns.

Todd Hanson | EurekAlert!
Further information:
http://www.lanl.gov

Further reports about: Security explosive method

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>