Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Find Aging Gene Also Protects Against Prostate Cancer Development

29.11.2006
Cancer scientists at the Kimmel Cancer Center at Thomas Jefferson University in Philadelphia have shown that a gene that is involved in regulating aging also blocks prostate cancer cell growth.

The researchers, led by Kimmel Cancer Center director Richard Pestell, M.D., Ph.D., hope the newly found connection will aid in better understanding the development of prostate cancer and lead to new drugs against the disease.

SIRT1 is a member of a family of enzymes called sirtuins that have far-reaching influence in all organisms, including roles in metabolism, gene expression and aging.

“We know that sirtuins play a role in aging, and that the risk for prostate cancer increases with aging, but no one has ever linked the two until now,” says Dr. Pestell, who is also professor and chair of cancer biology at Jefferson Medical College.

“We’ve shown that by making a prostate cancer with cells overexpressing a mutation for the androgen receptor, which is resistant to current forms of therapy, we can almost completely block the growth of these cells with SIRT1,” he says. Dr. Pestell and his team report their findings in November in the journal Molecular and Cellular Biology.

According to Dr. Pestell, prostate cancer cells can express a mutation that makes patients resistant to current forms of treatment such as hormonal therapy. Such therapy focuses on inactivating the androgen receptor by giving agents that shut off testosterone production.

In one experiment, the scientists took a series of mutations in androgen receptors from prostate cancer patients who are resistant to hormonal therapy and showed that SIRT1 blocks receptor activity, halting cancer growth. “We systematically tested each androgen receptor mutation,” Dr. Pestell explains. “These mutant receptors are resistant to current therapies and are all blocked by expression of SIRT1,” adding that prostate specific antigen (PSA) levels were used to confirm this. Rising PSA levels are frequently an indication of prostate cancer growth or recurrence, whereas falling levels indicate tumor shrinkage.

“This study shows that there is potentially new opportunity for these cancer patients with drugs that regulate SIRT1,” Dr. Pestell says.

“The discovery is a true breakthrough in our field,” says Chawnshang Chang, Ph.D., George Hoyt Whipple Professor of Pathology and Laboratory Medicine and professor of urology and of biochemistry at the University of Rochester.

Dr. Pestell and his co-workers also found a single amino acid within the androgen receptor that reacts with SIRT1’s enzymatic activity and proved in the laboratory that it was key to its cancer-halting effect. The work could lead to a model for drug screening, Dr. Pestell notes.

Steve Benowitz | EurekAlert!
Further information:
http://www.jefferson.edu

Further reports about: Mutation Pestell SIRT1 androgen receptor prostate prostate cancer receptor

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>