Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UNC scientists solve mystery of how largest cellular motor protein powers movement

29.11.2006
Scientists now understand how an important protein converts chemical energy to mechanical force, thus powering the process of cell division, thanks to a new structural model by University of North Carolina at Chapel Hill researchers.

The structural model helps solve a scientific mystery: how the protein dynein fuels itself to perform cellular functions vital to life. These functions include mitosis, or cell division into identical cells.

Dynein uses energy derived from ATP, or adenosine triphosphate, a molecule that is the principal form of energy for cells. The lack of a comprehensive and detailed molecular structure for dynein has kept scientists largely in the dark about how the protein converts ATP into mechanical force, said Dr. Nikolay V. Dokholyan, assistant professor of biochemistry and biophysics in the UNC School of Medicine.

Dokholyan said the dynein puzzle is similar to figuring out how auto engines make cars move.

... more about:
»ATP »Cellular »Protein

“You have an engine up front that burns gas, but we didn’t know how the wheels are made to move.”

Dr. Timothy Elston, associate professor of pharmacology and director of the School of Medicine’s bioinformatics and computational biology program, explains further. “One of the unknowns about dynein was that the molecular site where chemical energy is initially released from ATP is very far away from where the mechanical force occurs. The mechanical force must be transmitted over a large distance.”

The study was published online Nov. 22 in the Proceedings of the National Academy of Sciences Early Edition. The work was supported in part by grants from the Muscular Dystrophy Association and the American Heart Association.

Using a variety of modeling techniques that allowed resolution at the level of atoms, Adrian W.R. Serohijos, a graduate student in Dokholyan’s lab and first author of the study, identified a flexible, spring-like “coiled-coil” region within dynein. It couples the motor protein to the distant ATP site.

“This dynein coiled-coil was completely missing from all previous studies. We saw it could allow a very rapid transduction of chemical energy into mechanical energy,” Dokholyan said.

Conversion to mechanical energy allows dynein to transport cellular structures such as mitochondria that perform specific jobs such as energy generation, protein production and cell maintenance. Dynein also helps force apart chromosomes during cell division.

“Dividing cells must separate their chromosomes and something has to generate the force to move chromosomes apart. Dynein provides the mechanical energy to do that,” Doholyan said.

While the research offers no immediate application to human disease, the authors noted that mutations of dynein have been implicated in some neurodegenerative and kidney disorders. Dokholyan pointed out that disruption of dynein’s interaction with a particular regulator protein causes defects in nerve cell transmission and mimics the symptoms of people with amyotrophic lateral sclerosis (ALS).

Les Lang | EurekAlert!
Further information:
http://www.med.unc.edu

Further reports about: ATP Cellular Protein

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>