Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Method for Detecting Antibiotic Resistance: Mutations Emit Light Signals

29.11.2006
The exchange of a single gene building block in the genetic material of the tuberculosis bacterium leads to resistance to the antibiotic rifampicin.

Scientists of the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) and the Universities of Heidelberg and Bielefeld, Germany, have developed a highly sensitive test for detecting this genetic alteration at the level of a single molecule, thus providing information about the resistance status of an infected person.

Many resistances to antibiotics are based on specific mutations in the genetic material of the infectious agents. In the case of life-threatening infections it is vital to determine rapidly which medication will work for the patient. However, commonly used methods of resistance detection are too time-consuming, particularly with microorganisms such as tuberculosis bacteria, which grow very slowly in the culture dish.

Scientists headed by Dr. Jens-Peter Knemeyer of the Division of Functional Genome Analysis at the DKFZ have combined a hybridization method, where small DNA probes bind highly specifically and exclusively to the mutated gene sequence, with confocal microscopy technology. The DNA probes are coupled to a fluorescent dye that flashes under laser light. However, this light signal is emitted only if the probe attaches to the target sequence in the bacterial genetic material. ‘Unbound’ probe molecules do not emit a signal. Each of these tiny light flashes that occur when the probe and the target molecule bind to each other, detects a single mutated DNA molecule.

... more about:
»DNA »Genetic »resistance

By measuring the duration and decay times of the light flashes, the researchers distinguish between real measurement results and the ubiquitous background fluorescence: Due to chemical properties of the molecules involved, spontaneous fluorescence decays much more quickly than the signal emitted by the dye-labeled probe.

Detection of resistance causing point mutations in the genetic material of the tuberculosis bacterium is just one of numerous possible applications of the new method called single-molecule fluorescence spectroscopy. The method has a big advantage: Instead of recording light flashes in a sample solution, as is done in antibiotic resistance detection, the investigation method can also be used in living cells. Dr. Jörg Hoheisel, head of the Division of Functional Genome Analysis at the DKFZ, explains: “Just as we can detect DNA mutations, we can also use suitable probes to detect all molecules in a cell that are characteristic of a specific disease. Since the test identifies single molecules, it is highly sensitive – but reliable at the same time, because we have an internal control using the decay times.”

Julia Rautenstrauch | alfa
Further information:
http://www.dkfz.de

Further reports about: DNA Genetic resistance

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>