Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Method for Detecting Antibiotic Resistance: Mutations Emit Light Signals

29.11.2006
The exchange of a single gene building block in the genetic material of the tuberculosis bacterium leads to resistance to the antibiotic rifampicin.

Scientists of the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) and the Universities of Heidelberg and Bielefeld, Germany, have developed a highly sensitive test for detecting this genetic alteration at the level of a single molecule, thus providing information about the resistance status of an infected person.

Many resistances to antibiotics are based on specific mutations in the genetic material of the infectious agents. In the case of life-threatening infections it is vital to determine rapidly which medication will work for the patient. However, commonly used methods of resistance detection are too time-consuming, particularly with microorganisms such as tuberculosis bacteria, which grow very slowly in the culture dish.

Scientists headed by Dr. Jens-Peter Knemeyer of the Division of Functional Genome Analysis at the DKFZ have combined a hybridization method, where small DNA probes bind highly specifically and exclusively to the mutated gene sequence, with confocal microscopy technology. The DNA probes are coupled to a fluorescent dye that flashes under laser light. However, this light signal is emitted only if the probe attaches to the target sequence in the bacterial genetic material. ‘Unbound’ probe molecules do not emit a signal. Each of these tiny light flashes that occur when the probe and the target molecule bind to each other, detects a single mutated DNA molecule.

... more about:
»DNA »Genetic »resistance

By measuring the duration and decay times of the light flashes, the researchers distinguish between real measurement results and the ubiquitous background fluorescence: Due to chemical properties of the molecules involved, spontaneous fluorescence decays much more quickly than the signal emitted by the dye-labeled probe.

Detection of resistance causing point mutations in the genetic material of the tuberculosis bacterium is just one of numerous possible applications of the new method called single-molecule fluorescence spectroscopy. The method has a big advantage: Instead of recording light flashes in a sample solution, as is done in antibiotic resistance detection, the investigation method can also be used in living cells. Dr. Jörg Hoheisel, head of the Division of Functional Genome Analysis at the DKFZ, explains: “Just as we can detect DNA mutations, we can also use suitable probes to detect all molecules in a cell that are characteristic of a specific disease. Since the test identifies single molecules, it is highly sensitive – but reliable at the same time, because we have an internal control using the decay times.”

Julia Rautenstrauch | alfa
Further information:
http://www.dkfz.de

Further reports about: DNA Genetic resistance

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>