Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NYU, Scripps finding offers new path for treatment of diabetes

28.11.2006
Researchers at New York University and the Scripps Research Institute have discovered a new enzyme, GAPDH, which regulates insulin pathways—a finding that offers a new direction for the treatment of diabetes. The research is reported in the most recent issue of the journal Nature Chemical Biology.

The enzyme GAPDH was previously unknown to be a factor in the development of diabetes in humans. It has also been discovered that the inhibition of GAPDH attenuates the diabetic disease symptom in model animals.

The research team, which included NYU’s Departments of Biology and Chemistry and Scripps’ Department of Cell Biology, used the worm Caenorhabditis elegans (C. elegans) to identify a new therapeutic target protein for diabetic treatment. C. elegans is the first animal species where RNA interference (RNAi) is discovered and thus, an excellent model organism for chemical genetic research. In this study, the researchers screened hundreds of chemical compounds to find one hit compound, which rescues the mutant C. elegans (diabetics model) from diabetes. Then, they identified the target protein, which was found to be the enzyme GAPDH. GAPDH has long been known as one of the important glycolytic enzymes, and its function is affected by insulin. However, this is the first discovery that GAPDH actively regulates the insulin pathway.

The research team constructed all the molecules by incorporating the fishing tag (linker) from the beginning, and facilitated the target fishing. The hit compound was named GAPDS (GAPDH segregator) as GAPDS disassemble the multi-part structure of GAPDH into monomers. The segregation of GAPDH releases the suppressor of insulin signaling from the cell membrane, and thus activates the insulin signaling to eventually help to treat diabetes.

... more about:
»Diabetes »GAPDH »Insulin »compound »elegans »enzyme

While the C-elegans is a recommended model for chemical genetic study, treating them with chemical compounds presented difficulties for the researchers because they grow on the surface of agar. To overcome these challenges, the researchers devised a soaking method in which the worms were placed in a compound solution for 24 hours. By this method, the worms were exposed to equitable concentration of the compounds. The mutant C-elegans are in a growth arrested status. By addition of compounds, a re-growing of the worms into normal size was observed by GAPDS, which is analogous to treating diabetes patients with a drug.

While there are many drugs on the market to treat diabetes, the number of known disease-producing protein targets is small. Because diabetes has many causes, targeting several different proteins offers the most promising method for treatment. The discovery of GAPDH adds another target that can be addressed in combating the disease.

James Devitt | EurekAlert!
Further information:
http://www.nyu.edu

Further reports about: Diabetes GAPDH Insulin compound elegans enzyme

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>