Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Quest for better breast cancer drugs

Breast cancer sufferers could eventually benefit from high-tuned, tailor-made drug treatments that minimise side effects as a result of a joint initiative between computer scientists in Edinburgh and cellular biologists in Japan.

The five-year project, which involves the University of Edinburgh and the Riken Genomic Research Centre in Japan, will initially look at why particular treatments for breast cancer work in some patients and not in others.

It will use advanced computer systems set up at the University of Edinburgh’s School of Informatics to run programmes incorporating expertise from cellular biologists in Japan to better understand the make-up of particular drugs and why their effectiveness differs among patients.

It is hoped that the database, which will use clinical information from patients at the Edinburgh Breast Unit and Cancer Research Centre, will be able to narrow down the different types of drugs that should be prescribed to individual patients and what types of combination therapy would have the best outcome.

... more about:
»Cancer »biologist »patients

The database could also provide information for creating new drugs, with computer modelling becoming an integral part of medical research.

Igor Goryanin, director of the Edinburgh Centre for Bioinformatics, based at the University, said: “The computer systems will help the biologist to understand the function of the organisms and, with this knowledge, we will be able to predict more accurately which new and existing drugs work and why.

“We would hope to further our research further and look at other cancers as well as diseases such as heart disease and neural and psychiatric diseases. Identifying which drugs have the best responses in particular patients would not only save lives but would also save the NHS money as treatment with expensive drugs can be tailor-made for whom it works.”

Tara Womersley | EurekAlert!
Further information:

Further reports about: Cancer biologist patients

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>