Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quest for better breast cancer drugs

28.11.2006
Breast cancer sufferers could eventually benefit from high-tuned, tailor-made drug treatments that minimise side effects as a result of a joint initiative between computer scientists in Edinburgh and cellular biologists in Japan.

The five-year project, which involves the University of Edinburgh and the Riken Genomic Research Centre in Japan, will initially look at why particular treatments for breast cancer work in some patients and not in others.

It will use advanced computer systems set up at the University of Edinburgh’s School of Informatics to run programmes incorporating expertise from cellular biologists in Japan to better understand the make-up of particular drugs and why their effectiveness differs among patients.

It is hoped that the database, which will use clinical information from patients at the Edinburgh Breast Unit and Cancer Research Centre, will be able to narrow down the different types of drugs that should be prescribed to individual patients and what types of combination therapy would have the best outcome.

... more about:
»Cancer »biologist »patients

The database could also provide information for creating new drugs, with computer modelling becoming an integral part of medical research.

Igor Goryanin, director of the Edinburgh Centre for Bioinformatics, based at the University, said: “The computer systems will help the biologist to understand the function of the organisms and, with this knowledge, we will be able to predict more accurately which new and existing drugs work and why.

“We would hope to further our research further and look at other cancers as well as diseases such as heart disease and neural and psychiatric diseases. Identifying which drugs have the best responses in particular patients would not only save lives but would also save the NHS money as treatment with expensive drugs can be tailor-made for whom it works.”

Tara Womersley | EurekAlert!
Further information:
http://www.ed.ac.uk

Further reports about: Cancer biologist patients

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

Construction of practical quantum computers radically simplified

05.12.2016 | Information Technology

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>