Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cloning techniques produce FDA-approved antibiotic

28.11.2006
The successful synthesis of an antibiotic in a non-native host has provided a team of researchers at the University of Illinois at Urbana-Champaign with the potential for developing new treatments for bacterial infections.

The rapid rise of antibiotic resistance poses a serious threat to human health, and demands new treatments effective against resistant pathogens. Fosfomycin is a natural antibiotic approved by the Food and Drug Administration for the treatment of various bacterial infections, and has proven effective for the treatment of infections that have become resistant to the antibiotics penicillin and vancomycin.

Fosfomycin is a member of a class of compounds called phosphonic acids because they contain a carbon-phosphorous bond. Fosfomycin functions by inactivating an essential enzyme involved in the formation of the bacterial cell wall.

"Phosphonic acids are underexploited bioactive compounds with great potential for treating human disease," said Huimin Zhao, a U. of I. professor of chemical and biomolecular engineering. "We hope to understand the complete pathway for how fosfomycin is made."

... more about:
»Zhao »antibiotic »fosfomycin »non-native »produce

In a paper to appear in the Nov. 27 journal Chemistry and Biology, Zhao and U. of I. chemistry professor Wilfred A. van der Donk report the first successful synthesis of fosfomycin in a non-native host.

Fosfomycin is produced by various species of bacteria, but generally in low yields. Using a cloning method developed by Illinois microbiologist William W. Metcalf, the researchers were able to clone the essential genes for fosfomycin synthesis and then produce it in a non-native host, potentially in much larger quantities.

After isolating the genetic information from fosfomycin's native host, Streptomyces fradiae, certain genes were inactivated, and the ability of a non-native host Streptomyces lividians to produce fosfomycin was assessed.

With the help of graduate students Ryan Woodyer and Zengyi Shao, Zhao and van der Donk were able to determine not only the minimal set of genes required for fosfomycin biosynthesis, but also the function of some of these genes.

"Our goal now is to produce fosfomycin in Escherichia coli so that we can use various protein and metabolic engineering tools to manipulate the fosfomycin biosynthetic pathway," said Zhao, who also is an affiliate of the university's Institute for Genomic Biology. "Eventually, we should be able to produce fosfomycin in a cost-effective manner and create more potent derivatives of it."

Previously, four essential genes and a portion of fosfomycin's biosynthetic pathway had been proposed, but researchers were unable to produce fosfomycin in a non-native host. Zhao's findings indicate that the presence of additional genes that result in a revised mechanism is crucial for successful fosfomycin biosynthesis.

Kristen Aramthanapon | EurekAlert!
Further information:
http://www.uiuc.edu

Further reports about: Zhao antibiotic fosfomycin non-native produce

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>