Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Humpback whales have brain cells also found in humans

28.11.2006
Cetaceans, the group of marine mammals that includes whales and dolphins, have demonstrated remarkable auditory and communicative abilities, as well as complex social behaviors.

A new study published online November 27, 2006 in The Anatomical Record, the official journal of the American Association of Anatomists,compared a humpback whale brain with brains from several other cetacean species and found the presence of a certain type of neuron cell that is also found in humans. This suggests that certain cetaceans and hominids may have evolved side by side. The study is available online via Wiley InterScience at http://www.interscience.wiley.com/journal/ar.

Although the biology of the humpback whale is well understood, there have been virtually no studies published on its brain composition, leaving an open question as to how brain structure may relate to the extensive behavioral and social abilities of this mammal. Although brain to body mass ratio, a rough measure of intelligence, is lower for baleen whales such as the humpback compared to toothed whales such as dolphins, the structure and large brain size of baleen whales suggests that they too have a complex and elaborate evolutionary history.

Patrick R. Hof and Estel Van der Gucht of the Department of Neuroscience at Mount Sinai School of Medicine in New York, NY, examined the brain of an adult humpback whale and compared it with the brain of a fin whale (another baleen species) and brains from several toothed whales, including three bottlenose dolphins, an Amazon river dolphin, a sperm whale, two beluga whales, a killer whale and several other whale and dolphin species. They found that the humpback cerebral cortex, the part of the brain where thought processes take place, was similar in complexity to smaller sized cetaceans such as dolphins. The large area of cortex found in these mammals is thought to be related to acoustic capabilities and the current study shows that it is organized into a system of core and belt regions. However, substantial variability was found between the cell structure of the cortex in humpbacks compared to toothed whales. The authors suggest that these differences may indicate differences in brain function and behavior in aquatic species that are not yet understood.

... more about:
»Cortex »Neuron »cetacean »hominids »toothed

One feature that stood out in the humpback whale brain was the modular organization of certain cells into "islands" in the cerebral cortex that is also seen in the fin whale and other types of mammals. The authors speculate that this structural feature may have evolved in order to promote fast and efficient communication between neurons. The other notable feature was the presence of spindle cells in the humpback cortex in areas comparable to hominids and in other areas of the whale brain as well. Although the function of spindle neurons is not well understood, they are thought to be involved in cognitive processes and are affected by Alzheimer's disease and other debilitating brain disorders such as autism and schizophrenia. Spindle neurons were also found in the same location in toothed whales with the largest brains, which suggests that they may be related to brain size.

The authors note that spindle neurons probably first appeared in the common ancestor of hominids about 15 million years ago, since they are observed in great apes and humans, but not in lesser apes and other primates; in cetaceans they evolved earlier, possibly as early as 30 million years ago. It is possible that they were present in the ancestors of all cetaceans, but were retained only in those with the largest brains during their evolution. It may also be that they evolved several times independently in the two cetacean suborders; part of this process may have taken place at the same time as they appeared in the ancestor of great apes, which would be a rare case of parallel evolution.

"In spite of the relative scarcity of information on many cetacean species, it is important to note in this context that sperm whales, killer whales, and certainly humpback whales, exhibit complex social patterns that included intricate communication skills, coalition-formation, cooperation, cultural transmission and tool usage," the authors state. "It is thus likely that some of these abilities are related to comparable histologic complexity in brain organization in cetaceans and in hominids."

The authors conclude: "Cetacean and primate brains may be considered as evolutionary alternatives in neurobiological complexity and as such, it would be compelling to investigate how many convergent cognitive and behavioral features result from largely dissimilar neocortical organization between the two orders." They also suggest that the current study provides a framework for further investigations into the brain and behavior of cetaceans, which are naturally elusive, poorly documented and often endangered.

Amy Molnar | EurekAlert!
Further information:
http://www.interscience.wiley.com/journal/ar

Further reports about: Cortex Neuron cetacean hominids toothed

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>