Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New data from NIH lab confirms protocol to reverse type 1 diabetes in mice

28.11.2006
Data also support role for adult spleen cells in regeneration of beta cells

New data published in the Nov. 24 issue of Science provide further support for a protocol to reverse type 1 diabetes in mice and new evidence that adult precursor cells from the spleen can contribute to the regeneration of beta cells.

In 2001 and 2003, researchers at Massachusetts General Hospital (MGH) demonstrated the efficacy of a protocol to reverse of type 1 diabetes in diabetic mice. Three studies from other institutions published in the March 24, 2006 issue of Science confirmed that the MGH-developed protocol can reverse the underlying disease but were inconclusive on the role of spleen cells in the recovery of insulin-producing pancreatic islets.

The new data from a study performed at the National Institutes of Health (NIH), published as a technical comment, provides additional confirmation of the ability to reverse type 1 diabetes and on the role of the spleen cells in islet regeneration.

... more about:
»Diabetes »NIH »Regeneration »spleen »type 1 diabetes

"This data from the NIH and the earlier studies have added significantly to the understanding of how diabetes may be reversed," says Denise Faustman, MD, PhD, director of the Immunobiology Laboratory at Massachusetts General Hospital, primary author of the 2001 and 2003 studies and co-corresponding author of the current report. "It is still early, but it appears that there are multiple potential sources for regenerating islets. As a research community we should pursue all avenues. We're excited to see what will happen in humans."

In the 2001 and 2003 studies, Faustman and colleagues treated end-stage nonobese diabetic (NOD) mice with Freund's complete adjuvant, a substance that suppresses the activity of the immune cells that destroy islets in type 1 diabetes. They also introduced donor spleen cells to retrain the immune system not to attack islets and found that the protocol not only halted the immune destruction caused by diabetes but also allowed the insulin-producing pancreatic islet cells to regenerate. Evidence indicated that the spleen cells were the source of at least some of the regenerated islet cell and hastened the restoration of blood sugar levels.

The direct contribution of spleen cells to islet recovery, first described in the 2003 study, is confirmed in the current work. NIH researchers used cell lineage tracking in the form of Y-chromosomal fluorescence in situ hybridization (FISH), in combination with insulin staining, to follow the fate of male spleen cells transplanted into female recipients. The female mice that received male donor cells consistently showed Y-chromosome-positive insulin-producing islet cells, indicating that the introduced spleen cells contribute to islet recovery. The current study also showed that the degree of spleen cell contribution is influenced by mouse age at the start of treatment. Spleen cells appear to contribute to islet recovery more in mice who are older and with more advanced diabetes compared with younger mice with less advanced diabetes, in which regeneration of remaining islets may be the dominant mechanism.

Sue McGreevey | EurekAlert!
Further information:
http://www.mgh.harvard.edu/

Further reports about: Diabetes NIH Regeneration spleen type 1 diabetes

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>