Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene linked to aggressive 'wet' age-related macular degeneration

27.11.2006
A gene variant that increases the risk of developing the aggressive "wet" form of age-related macular degeneration (AMD), the most common cause of blindness in people over age 50, is reported in two recent articles in Science by researchers at Yale School of Medicine.

AMD causes light-sensitive cells in the retina to break down, resulting in progressive loss of central vision. Of the two forms of AMD, the "dry" is more common than the "wet" form. Wet macular degeneration can rapidly lead to blindness, while the dry AMD progresses more slowly.

Last year, Josephine Hoh, associate professor in the Departments of Epidemiology & Public Health and Ophthalmology at Yale and senior author on one of the two new studies, identified a gene for dry AMD and found that both wet and dry AMD are associated with a variant in the complement factor H (CFH) gene on chromosome 1.

Hoh now reports they have found a single nucleotide polymorphism (SNP)—a one-base change in the sequence—of the regulatory part of the HTRA1 gene on chromosome 10 that leads to greatly increased risk of developing the wet form of AMD.

... more about:
»AMD »Degeneration »HTRA1 »Macular »SNP »drusen

According to Hoh, buildup of abnormal blood vessels in Caucasian patients is compounded by development of large waste deposits called drusen. Chinese patients, she said, develop little to no drusen and progress directly to wet AMD. This study demonstrates that these two major genes, CFH and HTRA1, in two different biological pathways, each affect the risk for a distinct component of the AMD phenotype: CFH influences the drusen of dry AMD, whereas HTRA1 influences blood vessel development, the hallmark of the wet disease type. When the two processes are combined, it leads to the composite characteristics that are seen in some cases of AMD.

Hoh, her collaborators in Hong Kong, and her colleagues at Yale including Michael Snyder and Colin Barnstable in the Departments of Molecular, Cellular and Developmental Biology and Molecular Biophysics and Biochemistry, and Ophthalmology, did trans-racial gene mapping by comparing genomes between precisely defined populations to find the incidence of SNP in a Chinese population—96 with AMD and 130 with normal vision.

"We found that patients with the HTRA1 SNP were 10 times more likely to have wet AMD than those without this gene variant," said Hoh. "While this is only preliminary work, it points to possible directions for future treatment of wet AMD."

Hoh also worked on a replication study led by Kang Zhang at the University of Utah School of Medicine that found a link between the same SNP and AMD. Zhang and his team studied 581 Caucasian patients with AMD and 309 with normal vision. These patients had wet AMD as well as a large amount of drusen.

To confirm the association, the Utah team also examined several donor eyes and measured the expression of the gene and the encoded protein. They found that the expressions were elevated in the eyes of patients who carry HTRA1.

"The marker we have identified is very much associated with AMD, but no one has ever pinpointed the clinical features of the gene. We need to conduct further analysis in order to understand the biological mechanisms," said Hoh.

Karen N. Peart | EurekAlert!
Further information:
http://www.yale.edu

Further reports about: AMD Degeneration HTRA1 Macular SNP drusen

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>