Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plague proteome reveals proteins linked to infection

24.11.2006
Pacific Northwest National Laboratory study can lead to improved disease detection, vaccines and treatments

Recreating growth conditions in flea carriers and mammal hosts, Pacific Northwest National Laboratory scientists have uncovered 176 proteins and likely proteins in the plague-bacterium Yersinia pestis whose numbers rise and fall according to the disease's virulence.

The team, led by the Department of Energy laboratory staff scientists Mary Lipton and Kim Hixson, identified the proteins as "unique biomarkers related specifically to growth condition," according to a study in the latest issue of the Journal of Proteome Research.

Biomarkers associated with disease progression show promise as detection tools in public health and biodefense and can guide drug and vaccine designers in their quest to disrupt the microbe's ability to infect.

... more about:
»Condition »pestis »proteome

Y. pestis is the bacterium that caused the infamous Black Death plagues. Fleas are vectors for the disease and can spread it to rodent and human hosts. This study mimicked environmental conditions of Y. pestis in flea and in mammalian systems.

The proteome is a survey of proteins in a cell. Lipton, Hixson and colleagues at the PNNL-based Environmental Molecular Sciences Laboratory and Lawrence Livermore National Laboratory used proteomic techniques called accurate mass and time tag mass spectrometry and clustering analysis to compare abundance changes in 992 proteins under four different growth conditions, at 26 degrees and 37 degrees Celsius and with and without calcium.

They found 89 candidate proteins with similar abundance changes to 29 known virulence-linked proteins, and an additional 87 disease-condition-associated "hypothetical" proteins. The Institute for Genomic Research defines a hypothetical protein as one identified by a gene-finding algorithm that matches no other known protein sequence or contains no other evidence that it is an actual product of a gene.

The study authors said the same approach is being applied to a search for biomarkers across a wide range of biological systems, from other infectious agents such as Salmonella to soil microbes of interest in cleaning up toxic waste.

The project was funded by the Department of Homeland Security.

PNNL is a DOE Office of Science laboratory that solves complex problems in energy, national security, the environment and life sciences by advancing the understanding of physics, chemistry, biology and computation. PNNL employs 4,200 staff, has a $725 million annual budget, and has been managed by Ohio-based Battelle since the lab's inception in 1965.

Bill Cannon | EurekAlert!
Further information:
http://www.pnl.gov

Further reports about: Condition pestis proteome

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>