Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plague proteome reveals proteins linked to infection

24.11.2006
Pacific Northwest National Laboratory study can lead to improved disease detection, vaccines and treatments

Recreating growth conditions in flea carriers and mammal hosts, Pacific Northwest National Laboratory scientists have uncovered 176 proteins and likely proteins in the plague-bacterium Yersinia pestis whose numbers rise and fall according to the disease's virulence.

The team, led by the Department of Energy laboratory staff scientists Mary Lipton and Kim Hixson, identified the proteins as "unique biomarkers related specifically to growth condition," according to a study in the latest issue of the Journal of Proteome Research.

Biomarkers associated with disease progression show promise as detection tools in public health and biodefense and can guide drug and vaccine designers in their quest to disrupt the microbe's ability to infect.

... more about:
»Condition »pestis »proteome

Y. pestis is the bacterium that caused the infamous Black Death plagues. Fleas are vectors for the disease and can spread it to rodent and human hosts. This study mimicked environmental conditions of Y. pestis in flea and in mammalian systems.

The proteome is a survey of proteins in a cell. Lipton, Hixson and colleagues at the PNNL-based Environmental Molecular Sciences Laboratory and Lawrence Livermore National Laboratory used proteomic techniques called accurate mass and time tag mass spectrometry and clustering analysis to compare abundance changes in 992 proteins under four different growth conditions, at 26 degrees and 37 degrees Celsius and with and without calcium.

They found 89 candidate proteins with similar abundance changes to 29 known virulence-linked proteins, and an additional 87 disease-condition-associated "hypothetical" proteins. The Institute for Genomic Research defines a hypothetical protein as one identified by a gene-finding algorithm that matches no other known protein sequence or contains no other evidence that it is an actual product of a gene.

The study authors said the same approach is being applied to a search for biomarkers across a wide range of biological systems, from other infectious agents such as Salmonella to soil microbes of interest in cleaning up toxic waste.

The project was funded by the Department of Homeland Security.

PNNL is a DOE Office of Science laboratory that solves complex problems in energy, national security, the environment and life sciences by advancing the understanding of physics, chemistry, biology and computation. PNNL employs 4,200 staff, has a $725 million annual budget, and has been managed by Ohio-based Battelle since the lab's inception in 1965.

Bill Cannon | EurekAlert!
Further information:
http://www.pnl.gov

Further reports about: Condition pestis proteome

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>