Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic variation: We're more different than we thought

24.11.2006
New research shows that at least 10 percent of genes in the human population can vary in the number of copies of DNA sequences they contain--a finding that alters current thinking that the DNA of any two humans is 99.9 percent similar in content and identity.

This discovery of the extent of genetic variation, by Howard Hughes Medical Institute (HHMI) international research scholar Stephen W. Scherer, and colleagues, is expected to change the way researchers think about genetic diseases and human evolution.

Genes usually occur in two copies, one inherited from each parent. Scherer and colleagues found approximately 2,900 genes--more than 10 percent of the genes in the human genome--with variations in the number of copies of specific DNA segments. These differences in copy number can influence gene activity and ultimately an organism's function.

To get a better picture of exactly how important this type of variation is for human evolution and disease, Scherer's team compared DNA from 270 people with Asian, African, or European ancestry that had been compiled in the HapMap collection and previously used to map the single nucleotide changes in the human genome. Scherer's team mapped the number of duplicated or deleted genes, which they call copy number variations (CNVs). They reported their findings in the November 23, 2006, issue of the journal Nature.

... more about:
»CNVs »DNA »Evolution »Nucleotide »SNP »human genome

Scherer, a geneticist at the Hospital for Sick Children and the University of Toronto, and colleagues searched for CNVs using microarray-based genome scanning techniques capable of finding changes at least 1,000 bases (nucleotides) long. A base, or nucleotide, is the fundamental building block of DNA. They found an average of 70 CNVs averaging 250,000 nucleotides in size in each DNA sample. In all, the group identified 1,447 different CNVs that collectively covered about 12 percent of the human genome and six to 19 percent of any given chromosome--far more widespread than previously thought.

Not only were the changes common, they also were large. "We'd find missing pieces of DNA, some a million or so nucleotides long," Scherer said. "We used to think that if you had big changes like this, then they must be involved in disease. But we are showing that we can all have these changes."

The group found nearly 16 percent of known disease-related genes in the CNVs, including genes involved in rare genetic disorders such as DiGeorge, Angelman, Williams-Beuren, and Prader-Willi syndromes, as well as those linked with schizophrenia, cataracts, spinal muscular atrophy, and atherosclerosis.

In related research published November 23, 2006, in an advance online publication in Nature Genetics, Scherer and colleagues also compared the two human genome maps--one assembled by Celera Genomics, Inc., and one from the public Human Genome Project. They found thousands of differences.

"Other people have [compared the two human genome sequences]," Scherer said, "but they found so many differences that they mostly attributed the results to error. They couldn't believe the alterations they found might be variants between the sources of DNA being analyzed."

A lot of the differences are indeed real, and they raise a red flag, he said.

Personalized genome sequencing--for individualized diagnosis, treatment, and prevention of disease--is not far off, Scherer pointed out. "The idea [behind comparing the human genome sequences] was to come up with a good understanding of what we're going to get when we do [personalized sequencing]," he explained. "This paper helps us think about how complex it will be."

In a "News and Views" article in the same issue of Nature, HHMI professor Huntington F. Willard writes, "the stage is set for global studies to explore anew…the clinical significance of human variation." Willard is director of the Institute for Genome and Science Policy at Duke University.

To fully extract meaningful data using the human genome maps, researchers must know what's missing and how much variation exists, Scherer said. "Our computer algorithms are smart, but it is hard to find something if it is not there in the reference you are comparing against."

In fact, Scherer's group found some 30 million nucleotides that are seemingly not yet represented at all, or in different copy numbers or orientations, when comparing the Celera assembly to the public human genome sequence. The entire human genome is thought to contain about 3 billion nucleotides.

The discovery of an abundance of DNA variation puts a whole new spin on the study of genetic disease. Most research has focused on small alterations, called single nucleotide polymorphisms (SNPs). It may be, said Scherer, that some diseases are caused by copy number variations rather than SNPs. In fact, recent research has already linked such variations to kidney disease, Parkinson's disease, Alzheimer's disease, and AIDS susceptibility.

The discovery also provides a new outlook on evolution.

"Until now, our focus has been on examining evolution through either small SNP changes or larger chromosomal alterations you can see under the microscope, because that's what we could detect," Scherer said. "But now there's a whole new class of mid-sized variants encompassing millions of nucleotides of DNA to consider."

This change in the way scientists think about human genetics is exciting, but it is still very early to know what all this means, said Scherer. "Though it does make you wonder, he added. "If you have 1 million fewer nucleotides than your buddy, shouldn't you get a break on your golf handicap?"

Jennifer Donovan | EurekAlert!
Further information:
http://www.hhmi.org

Further reports about: CNVs DNA Evolution Nucleotide SNP human genome

More articles from Life Sciences:

nachricht Molecular evolution: How the building blocks of life may form in space
26.04.2018 | American Institute of Physics

nachricht Multifunctional bacterial microswimmer able to deliver cargo and destroy itself
26.04.2018 | Max-Planck-Institut für Intelligente Systeme

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

World's smallest optical implantable biodevice

26.04.2018 | Power and Electrical Engineering

Molecular evolution: How the building blocks of life may form in space

26.04.2018 | Life Sciences

First Li-Fi-product with technology from Fraunhofer HHI launched in Japan

26.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>