Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify master cardiac stem cell

24.11.2006
Progenitors develop into three types of heart cells, could be ideal for regenerative studies

Researchers from the Massachusetts General Hospital (MGH) Cardiovascular Research Center have discovered what appears to be a master cardiac stem cell, capable of differentiating into the three major types of cells that make up the mammalian heart. In their report appearing in the Dec. 15 issue of the journal Cell and receiving early online release, the scientists describe identifying these progenitor cells in mice, cloning single cells from embryonic stem cells, and showing that these cloned cells can differentiate into cardiac muscle, smooth muscle or endothelial cells.

"These cells offer new prospects for drug discovery and genetically based models of human disease. They also give us a new paradigm for cardiac development, in which a single multipotent cell can diversify into both muscle and endothelial lineages," says Kenneth R. Chien, MD, director of the MGH Cardiovascular Research Center (CVRC) and senior author of the Cell paper. "They additionally suggest a novel strategy for the regeneration of cardiac muscle, coronary arterial and pacemaker cells." Chien also leads the cardiovascular program at the Harvard Stem Cell Institute, one of the study's supporters.

Several populations of embryonic cells that develop into the heart and associated structures have previously been indentified. It has been thought that the three types of cells that make up the heart itself – the contracting cardiac muscle cells and the smooth muscle and endothelial cells that make up blood vessels – all develop from different cellular progenitors. Two major groups of cardiac muscle progenitors, called the first and second field, have been identified.

In 2005, Chien's team, then at the University of California at San Diego, described finding a group of cardiac muscle progenitors called isl1+ cells in heart tissue from newborn rats, mice and humans. The islet-1 protein, for which isl1+ progenitors are named, is known to be expressed in cells from the second cardiac field, which generate the structures on the right side of the heart. The current study was designed to investigate whether islet-1 expressing cells give rise to more than just cardiac muscle cells.

In a variety of experiments, the researchers first identified a small population of embryonic islet-1-expressing cells that can develop into working cardiac muscle, smooth muscle, pacemaker cells and the endothelial cells lining the major vessels of the heart and the coronary arteries. Starting with embryonic stem cells from mice, they were able to generate these multipotent embryonic isl1+ progenitor cells (MIPCs) – the parental cells that give rise to the postnatal progenitor cells identified in the 2005 study – and to clone and expand their population in vitro.

The team's in vivo study of mouse embryos found within primitive cardiac tissues a small group of cells expressing islet-1 and two other important proteins called Nkx2.5 and flk1. The researchers cultured and cloned those cells and found they could differentiate into all three cardiac cells types, verifying that they were MIPCs. Expression of the Nkx2.5 and flk1 genes seems to play a role in the process by which the cells 'decide' their developmental fate.

"We think these are authentic cardiac stem cells that are responsible for forming the diverse cell types of the heart, although other cells also contribute to some structures," says Chien. "These MIPCs may be excellent candidates for cardiac muscle regeneration studies, without the risk of tumor formation posed by embryonic stem cells or the limited effectiveness seen in studies using other cell types.

"It now appears that cardiac cells develop in the same way that blood cells do, with a master stem cell giving rise to the entire range of cells. The search is now on for the hormones that trigger expansion of MIPCs, which would be analogous to the factors that drive blood formation." Chien was recently named the Sanders Professor of Basic Science at Harvard Medical School.

The same issue of Cell contains an accompanying article from the Children's Hospital Boston laboratory of Stuart Orkin, MD, and the Harvard Stem Cell Institute describing the discovery in the first cardiac field of progenitor cells expressing the Nkx2.5 protein that can generate both cardiac and smooth muscle cells. Sean Wu, MD, PhD, the first author of that paper, has recently joined the MGH-CVRC where he and Chien's team will follow up these seminal findings, including clarifying any developmental relationship between the two types of progenitor cells.

Sue McGreevey | EurekAlert!
Further information:
http://www.mgh.harvard.edu/

More articles from Life Sciences:

nachricht At last, butterflies get a bigger, better evolutionary tree
16.02.2018 | Florida Museum of Natural History

nachricht New treatment strategies for chronic kidney disease from the animal kingdom
16.02.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>