Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Autoimmune disease triggered if T cells miss a single protein early on

23.11.2006
Scientists have discovered that autoimmunity can be triggered in the thymus, where the immune system's T cells develop, if T cells fail to recognize just one of the body's thousands of proteins as "self."

The research confirms an emerging view that autoimmunity can start in this cradle of the immune system, and not only at the sites where autoimmune diseases emerge, such as the pancreas in the case of type 1 diabetes, or the joints in rheumatoid arthritis.

The discovery, from a mouse model of a human autoimmune condition, suggests that effective strategies to treat autoimmune disease should target not only the "peripheral" sites where autoimmune disease is active, but also the thymus -- the organ where T cells and self-proteins, or self-antigens, first interact.

The research was led by investigators at the University of California, San Francisco (UCSF). It was published online November 20 by the Journal of Experimental Medicine and will appear in the journal's print edition November 27.

T cell soldiers encounter the body's full array of proteins in the thymus, and those T cells with receptors that recognize "self" proteins, or antigens, normally are purged to avoid autoimmune attacks in the body later on. The new research showed that if just one of the body's antigens is not recognized as "self," this single failure can lead to a severe autoimmune disease in the retina.

"The thymus is like a filter," said Mark Anderson, MD, PhD, assistant professor of medicine at the UCSF Diabetes Center, and senior author of a scientific paper describing the discovery. "It is removing or pulling out autoreactive T cells. What this new study shows is if just one self-antigen is missing as the T cells go through the filter, it looks like this alone can lead to an autoimmune disease."

"The finding supports the promise of treatments targeting individual body proteins or antigens since we have shown that a single self-antigen can trigger disease," he added.

A similar mechanism may be at play involving other autoimmune diseases such as type 1 diabetes, Anderson said. Immunologists have demonstrated that insulin is expressed in the thymus – not just in the pancreas. Studies have shown that people who are protected from diabetes express high levels of insulin in the thymus, while those who are predisposed express lower levels of insulin in this organ.

"What we think is that 'more is better' in the thymus," Anderson says. "If you have more insulin in the thymus, then there is a better chance that potentially destructive insulin-specific T cells will encounter insulin as self and be filtered out."

In the thymus, immature T cells display on their surface many thousands of unique receptors, generated by random gene rearrangements. This strategy allows the receptors to recognize the tremendous diversity of invading pathogens. In the process, however, they also develop receptors that bind to the body's own proteins. These T cells are normally eliminated, avoiding the plague of autoimmunity.

A clue to how the elimination process is controlled came from previous work involving a protein in the cell nucleus called Aire (for autoimmune regulator), which regulates the expression of some 300 to 1,000 antigens in the thymus. Humans and mice lacking the normal Aire gene suffer from multiple autoimmune diseases including diseases that target the thyroid, adrenal, ovary, and eye.

In 2002, Anderson, then at Harvard Medical School, and colleagues there demonstrated that knocking out the Aire gene in the mouse thymus led to failures of expression of a number of genes in peripheral tissues, resulting in autoimmune diseases in those tissues -- the first direct evidence linking gene knockouts in the thymus to autoimmune defects in body tissues. The study, however, did not link a specific organ autoimmune attack with a specific protein missing in the thymus.

In the new study, the researchers carried out a detailed analysis of the autoimmune attack that is directed against the eye in Aire-deficient mice. What the team found was that the immune system was mainly targeting a single eye protein called IRBP despite the fact that several eye-specific proteins were missing in the thymus of Aire knockout mice. The team then went on to show that IRBP was expressed in the thymus under the control of Aire and that knockout mice lacking the IRBP protein were protected from the disease because they don't express the protein that the immune system is targeting.

In a key, final part of the new study, Anderson and his colleagues showed that if mice without a thymus gland – so-called "nude" mice – received a normal thymus lacking only IRBP, they developed the autoimmune eye disease. The autoimmune attack occurred even though the mice had normally functioning IRBP in their retinas. The final finding demonstrated that failure of T cells in the thymus to recognize IRBP as a self-protein was sufficient to cause the autoimmune disorder in the retina.

The scientists hope that better understanding of interactions in the thymus can lead to earlier, more effective treatment of autoimmune diseases.

"When we see autoimmune disease in the clinic, we are usually looking at it in a relatively late stage. Tissue is already damaged, antigen expression is ramped up and the immune response is spreading to other self-antigens," Anderson said. "If we can also train our focus on the thymus, where we know at least some of the autoimmune disease is triggered, we may be able to determine just what self-antigens are important and shut down the autoimmune process targeting those self -antigens."

The team is collaborating with Jeffrey Bluestone, PhD, director of the UCSF Diabetes Center, in preclinical studies to see if T cell autoimmune attacks on IRBP can be modulated to prevent the autoimmune eye disease.

Wallace Ravven | EurekAlert!
Further information:
http://www.ucsf.edu

More articles from Life Sciences:

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How protein islands form
15.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>