Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Autoimmune disease triggered if T cells miss a single protein early on

Scientists have discovered that autoimmunity can be triggered in the thymus, where the immune system's T cells develop, if T cells fail to recognize just one of the body's thousands of proteins as "self."

The research confirms an emerging view that autoimmunity can start in this cradle of the immune system, and not only at the sites where autoimmune diseases emerge, such as the pancreas in the case of type 1 diabetes, or the joints in rheumatoid arthritis.

The discovery, from a mouse model of a human autoimmune condition, suggests that effective strategies to treat autoimmune disease should target not only the "peripheral" sites where autoimmune disease is active, but also the thymus -- the organ where T cells and self-proteins, or self-antigens, first interact.

The research was led by investigators at the University of California, San Francisco (UCSF). It was published online November 20 by the Journal of Experimental Medicine and will appear in the journal's print edition November 27.

T cell soldiers encounter the body's full array of proteins in the thymus, and those T cells with receptors that recognize "self" proteins, or antigens, normally are purged to avoid autoimmune attacks in the body later on. The new research showed that if just one of the body's antigens is not recognized as "self," this single failure can lead to a severe autoimmune disease in the retina.

"The thymus is like a filter," said Mark Anderson, MD, PhD, assistant professor of medicine at the UCSF Diabetes Center, and senior author of a scientific paper describing the discovery. "It is removing or pulling out autoreactive T cells. What this new study shows is if just one self-antigen is missing as the T cells go through the filter, it looks like this alone can lead to an autoimmune disease."

"The finding supports the promise of treatments targeting individual body proteins or antigens since we have shown that a single self-antigen can trigger disease," he added.

A similar mechanism may be at play involving other autoimmune diseases such as type 1 diabetes, Anderson said. Immunologists have demonstrated that insulin is expressed in the thymus – not just in the pancreas. Studies have shown that people who are protected from diabetes express high levels of insulin in the thymus, while those who are predisposed express lower levels of insulin in this organ.

"What we think is that 'more is better' in the thymus," Anderson says. "If you have more insulin in the thymus, then there is a better chance that potentially destructive insulin-specific T cells will encounter insulin as self and be filtered out."

In the thymus, immature T cells display on their surface many thousands of unique receptors, generated by random gene rearrangements. This strategy allows the receptors to recognize the tremendous diversity of invading pathogens. In the process, however, they also develop receptors that bind to the body's own proteins. These T cells are normally eliminated, avoiding the plague of autoimmunity.

A clue to how the elimination process is controlled came from previous work involving a protein in the cell nucleus called Aire (for autoimmune regulator), which regulates the expression of some 300 to 1,000 antigens in the thymus. Humans and mice lacking the normal Aire gene suffer from multiple autoimmune diseases including diseases that target the thyroid, adrenal, ovary, and eye.

In 2002, Anderson, then at Harvard Medical School, and colleagues there demonstrated that knocking out the Aire gene in the mouse thymus led to failures of expression of a number of genes in peripheral tissues, resulting in autoimmune diseases in those tissues -- the first direct evidence linking gene knockouts in the thymus to autoimmune defects in body tissues. The study, however, did not link a specific organ autoimmune attack with a specific protein missing in the thymus.

In the new study, the researchers carried out a detailed analysis of the autoimmune attack that is directed against the eye in Aire-deficient mice. What the team found was that the immune system was mainly targeting a single eye protein called IRBP despite the fact that several eye-specific proteins were missing in the thymus of Aire knockout mice. The team then went on to show that IRBP was expressed in the thymus under the control of Aire and that knockout mice lacking the IRBP protein were protected from the disease because they don't express the protein that the immune system is targeting.

In a key, final part of the new study, Anderson and his colleagues showed that if mice without a thymus gland – so-called "nude" mice – received a normal thymus lacking only IRBP, they developed the autoimmune eye disease. The autoimmune attack occurred even though the mice had normally functioning IRBP in their retinas. The final finding demonstrated that failure of T cells in the thymus to recognize IRBP as a self-protein was sufficient to cause the autoimmune disorder in the retina.

The scientists hope that better understanding of interactions in the thymus can lead to earlier, more effective treatment of autoimmune diseases.

"When we see autoimmune disease in the clinic, we are usually looking at it in a relatively late stage. Tissue is already damaged, antigen expression is ramped up and the immune response is spreading to other self-antigens," Anderson said. "If we can also train our focus on the thymus, where we know at least some of the autoimmune disease is triggered, we may be able to determine just what self-antigens are important and shut down the autoimmune process targeting those self -antigens."

The team is collaborating with Jeffrey Bluestone, PhD, director of the UCSF Diabetes Center, in preclinical studies to see if T cell autoimmune attacks on IRBP can be modulated to prevent the autoimmune eye disease.

Wallace Ravven | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>