Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The smell of money

23.11.2006
Research suggests an absence of metallic chemicals in the strong metallic odors that result from people handling coins and other metals

It's not hard to recall the pungent scent of a handful of pocket change. Similar smells emanate from a sweat-covered dumbbell or the water emerging from an old metal pipe. Yet no one has been able to identify the exact chemical cause of these familiar odors.

Now, researchers supported by a National Science Foundation (NSF) MUSES award and the UFZ Environmental Research Center in Germany have shown that these odor molecules come not from the penny or the pipes, but from metal-free chemicals erupting into the air when organic substances like sweat interact with the metallic objects.

The researchers--Andrea Dietrich, Dietmar Glindemann, Hans-Joachim Staerk and Peter Kuschk, all from Virginia Tech in Blacksburg--published their findings in the Oct. 20, 2006, Angewandte Chemie International Edition.

... more about:
»metallic »odor »smell

"We are the first to demonstrate that when humans describe the 'metallic' odor of iron metal, there are no iron atoms in the odors," said Dietrich. "The odors humans perceive as metallic are really a body odor produced by metals reacting with skin."

Because the makeup of byproduct molecules depends on which organic substances are reacting, the researchers believe the findings could help identify problem odors in potable water or aid doctors searching for disease markers in sweat or other body fluids.

The study, which focused mainly on the reactions of biological fluids with iron, also examined the scents emanating from iron in blood.

"We speculate that the 'blood scent' may result from skin reacting with ferrous iron because the same 'metallic' odor is produced if you rub blood on skin," said Dietrich.

One of the chemicals produced in the reaction is 1-octen-3-one, which has a mushroom-metallic smell and very low odor threshold, meaning that humans can smell it in extremely minute concentrations.

"This may have provided an evolutionary advantage that allowed early humans to track wounded comrades or prey," Dietrich added.

Josh Chamot | EurekAlert!
Further information:
http://wwwnsf.gov

Further reports about: metallic odor smell

More articles from Life Sciences:

nachricht Scientists enlist engineered protein to battle the MERS virus
22.05.2017 | University of Toronto

nachricht Insight into enzyme's 3-D structure could cut biofuel costs
19.05.2017 | DOE/Los Alamos National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>