Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Proteins anchor memories in our brain

23.11.2006
Math study: Holding nerve-signal receptors in place is crucial

A University of Utah study suggests that memories are held in our brains because certain proteins serve as anchors, holding other proteins in place to strengthen synapses, which are connections between nerve cells.

"The essential idea is that synapses are in a constant state of flux, so how can they be the seat of memories that can last a lifetime?" says mathematics Professor Paul Bressloff, a member of the Brain Institute at the University of Utah. "Part of the answer is that there are anchors inside the synapse that keep proteins in place, and these proteins help determine how strong a synapse is, which in turn contributes to forming and retaining memories."

The research is relevant not only to how memory and learning work, but to Alzheimer's disease, which is believed to involve, at least in part, a breakdown in the normal movement of proteins within synapses.

The study will be published Wednesday, Nov. 22, 2006, in The Journal of Neuroscience. Bressloff conducted the research with Berton Earnshaw, a doctoral student in mathematics. It was funded by the National Science Foundation.

Bressloff says the big debate about consciousness is, "Can it be explained simply in terms of a bunch of nerve impulses in the brain? In my opinion, the answer has to be yes" – an answer reinforced by his findings.

"Memories, behavior, feelings all are determined by patterns of nerve impulses in the brain," he adds. "If you change the pattern of nerve impulses, then that changes the memories, behavior and feelings. … What determines that pattern of nerve impulses is a mixture of stimuli we are receiving from the outside world and the strength of connections between nerve cells."

"Our knowledge and memories are determined by these connections in the brain. Who we are is determined by the strength of connections between neurons in the brain."

The Anatomy of Memory and Learning

A synapse is the junction between nerve cells or neurons. The synapse includes three parts: the end or "axon" of the upstream nerve cell, the microscopic gap between nerve cells, and a mushroom-shaped "dendritic spine," which is part of the downstream nerve cell.

What we learn and hold in our memory is believed to be distributed across many synapses, Bressloff says. Some memories, such as a person's face, may be held by just a few synapses, while other memories may be distributed across a large number, he adds.

While a nerve cell has only one axon to transmit outgoing signals, it has numerous structures called dendrites, which are like branches of a tree. Each dendrite, in turn, branches into twig-like dendritic spines. A single nerve cell may have 10,000 dendritic spines, and each spine is part of a synapse. So a single nerve cell can receive signals from 10,000 other nerve cells.

Nerve cells fire electric impulses. When an electrical nerve signal from one nerve cell arrives at the synapse, it triggers the release of chemicals called neurotransmitters. Those chemicals travel across the synapse and attach or "bind" to proteins on the dendritic spine that are called receptors.

One of the most important neurotransmitters is named glutamate, and it binds to proteins known as "AMPA receptors," which are embedded in the dendritic spines on the receiving end of nerve cells. The AMPA receptor proteins are held in the membrane by other proteins called "scaffolding proteins." Bressloff says AMPA is one of two key nerve-signal receptors known to "play a crucial role in learning and memory."

Earlier research indicates learning and memory depend on the strength of synapses between nerve cells. Bressloff says a synapse's strength depends not only on how much neurotransmitter is released by the upstream nerve cell, but on other factors, including the number of receptors like AMPA.

The Study: Simulating How Nerve Cells Receive Signals

Bressloff's study focused on how synapse strength relates to the number of AMPA receptors, which is crucial in determining how strong an electrical current is generated in a downstream nerve cell by a nerve impulse from an upstream nerve cell.

Individual AMPA receptors constantly are recycled or "trafficked" in and out of the synapse. So how can an ever-changing synapse help retain learning and memories?

Bressloff constructed a mathematical "model" – a simulation that used calculus equations to describe the movement of AMPA receptors in and out of the synapse.

The mathematical simulation was based on the notion that the downstream part of a synapse – namely, the mushroom-shaped dendritic spine – has two compartments. The first compartment looks like the cap of the mushroom. It is where AMPA receptors are held in place by scaffolding proteins so they can receive glutamate's chemical signal from the upstream nerve cell. The second compartment is like the mushroom's stalk.

Bressloff used 10 or fewer "differential equations" to describe four processes involved in determining the rates at which individual AMPA receptors leave or enter a synapse by moving between the cap- and stalk-like parts of the dendritic spine:

- Inside the cap, AMPA receptors can attach to scaffolding proteins so the receptors remain in place and can receive nerve signals via neurotransmitters.

- AMPA receptors that detach from scaffolding proteins can move back and forth between the cap and stalk; in other words, they can move in and out of the synapse.

- AMPA receptors can leave the dendritic spine completely, moving from the stalk to other parts of the dendrite that also are outside of the synapse. And they can move back into the stalk.

- AMPA receptors can leave the surface of the dendritic spine and move to its interior. And they can move back again.

- Bressloff tested his mathematical model against reality, showing the calculations accurately reflect how, over time, synapses become stronger as more nerve signals pass through them and weaker as fewer signals are transmitted.

That allowed him to ask what movements of AMPA receptors were likely to be responsible for making synapses stronger or weaker.

The simulation's answer: The strength of a synapse – and thus its ability to hold what we learn and remember – changes when there is a change in the number of scaffolding proteins that keep AMPA receptors in place in the synapse, specifically on the surface or cap of the mushroom-shaped dendritic spine.

In other words, the most important factor in strengthening synapses was the presence of scaffolding proteins that hold AMPA receptor proteins in place so they can receive nerve signals from neurotransmitter chemicals.

For synapses between nerves to grow stronger, "you can't just shove a bunch of new AMPA receptors to the surface because they will just go away again," Bressloff says. "You need to keep them there."

So what we remember and learn is, in effect, anchored to nerve cells in our brain.

"Our synapses are in a constant state of flux," Bressloff says. "They are exchanging molecules all the time. Yet we have stable memories and things we learn. So what is it that encodes a memory to the synapse if proteins are being changed all the time? Certain proteins act as anchors that keep other proteins in place."

Lee Siegel | EurekAlert!
Further information:
http://www.utah.edu

More articles from Life Sciences:

nachricht Individual Receptors Caught at Work
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rapid environmental change makes species more vulnerable to extinction
19.10.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

NASA team finds noxious ice cloud on saturn's moon titan

19.10.2017 | Physics and Astronomy

New procedure enables cultivation of human brain sections in the petri dish

19.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>