Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deciphered The Greatest Source Of Variability In The Human Genome

23.11.2006
More than 10% of the human genome might be different among humans. This difference can hold the key for differences in the predisposition to common disease and different response to treatment

Five years after the publication of the initial sequence of the human genome, it has been uncovered that this sequence is not identical among different individuals and that the existing variability is ten times greater than it was supposed in the initial studies. Up to now it was thought that each person differed from another in a million of the more than 3 billion nucleotides (the letters in which information is encrypted in the genome sequence: A, C, G and T) that compose the human genome.

A study carried out by a Consortium of American, Spanish, Canadian, British and Japanese investigators has revealed that any two people differ in more than 20 million nucleotides, that are grouped in at least 1.400 discrete regions of the genome.

The difference between a person and another is not in the sequence itself but in a varying number of copies. Those regions, that are termed "Copy Number Variants" or CNVs, suppose more than 360 million differences with respect to the original sequence published in early 2003 by the International Human Genome Project Consortium.

... more about:
»Nucleotide »human genome »regions

The study of the structural variation of the human genome will be published in Nature, in the issue of November 23rd. This research, carried out in samples coming from individuals of Asian, African and European ancestry, represents the most exhaustive study of large-scale variability thus far published, after the definition of the reference sequence of the human genome and the study of nucleotide diversity (HapMap), published in this same journal by the end of 2005.

The work clearly shows that it does not exist a unique sequence of the human genome, but a plethora of different sequences. The 1.400 variable regions reported do indeed contain genes, besides of other functional structures, and many of them correspond to regions involved in human diseases, such as muscular dystrophies, renal and many other developmental disorders. Besides, the regions that have been detected do contain variants that could confer sensitivity or resistance for many common diseases that affect the population, like AIDS or the systemic lupus erythematosus (SLE), among others. The results of this investigation uncover a new dimension of the complexity of the human genome, unexpected and unexplored until now.

The discovery opens the doors to numerous studies to define the causes of many human diseases, to develop more efficient pharmacological processes and to develop prenatal screening methods, which will completely change the current methodologies for the prenatal diagnostic.

Local investigators, Lluis Armengol, Juan Ramon Gonzalez, Monica Gratacos and Xavier Estivill, from the group of Genetic Causes of Disease of the Program Genes and Disease, at the Centre for Genomic Regulation (CRG) are part of the international consortium and have participated in the work. The Spanish contribution to this research project has been supported by the Foundation Genome Spain.

Gloria Lligadas | alfa
Further information:
http://www.crg.es

Further reports about: Nucleotide human genome regions

More articles from Life Sciences:

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht A 155 carat diamond with 92 mm diameter
22.03.2017 | Universität Augsburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>