Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deciphered The Greatest Source Of Variability In The Human Genome

23.11.2006
More than 10% of the human genome might be different among humans. This difference can hold the key for differences in the predisposition to common disease and different response to treatment

Five years after the publication of the initial sequence of the human genome, it has been uncovered that this sequence is not identical among different individuals and that the existing variability is ten times greater than it was supposed in the initial studies. Up to now it was thought that each person differed from another in a million of the more than 3 billion nucleotides (the letters in which information is encrypted in the genome sequence: A, C, G and T) that compose the human genome.

A study carried out by a Consortium of American, Spanish, Canadian, British and Japanese investigators has revealed that any two people differ in more than 20 million nucleotides, that are grouped in at least 1.400 discrete regions of the genome.

The difference between a person and another is not in the sequence itself but in a varying number of copies. Those regions, that are termed "Copy Number Variants" or CNVs, suppose more than 360 million differences with respect to the original sequence published in early 2003 by the International Human Genome Project Consortium.

... more about:
»Nucleotide »human genome »regions

The study of the structural variation of the human genome will be published in Nature, in the issue of November 23rd. This research, carried out in samples coming from individuals of Asian, African and European ancestry, represents the most exhaustive study of large-scale variability thus far published, after the definition of the reference sequence of the human genome and the study of nucleotide diversity (HapMap), published in this same journal by the end of 2005.

The work clearly shows that it does not exist a unique sequence of the human genome, but a plethora of different sequences. The 1.400 variable regions reported do indeed contain genes, besides of other functional structures, and many of them correspond to regions involved in human diseases, such as muscular dystrophies, renal and many other developmental disorders. Besides, the regions that have been detected do contain variants that could confer sensitivity or resistance for many common diseases that affect the population, like AIDS or the systemic lupus erythematosus (SLE), among others. The results of this investigation uncover a new dimension of the complexity of the human genome, unexpected and unexplored until now.

The discovery opens the doors to numerous studies to define the causes of many human diseases, to develop more efficient pharmacological processes and to develop prenatal screening methods, which will completely change the current methodologies for the prenatal diagnostic.

Local investigators, Lluis Armengol, Juan Ramon Gonzalez, Monica Gratacos and Xavier Estivill, from the group of Genetic Causes of Disease of the Program Genes and Disease, at the Centre for Genomic Regulation (CRG) are part of the international consortium and have participated in the work. The Spanish contribution to this research project has been supported by the Foundation Genome Spain.

Gloria Lligadas | alfa
Further information:
http://www.crg.es

Further reports about: Nucleotide human genome regions

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>