Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nuclear Magnetic Resonance observes inhibitors bound to enzymes

23.11.2006
A team of researchers led by Professor Paul Malthouse, principal investigator with the Centre for Synthesis and Chemical Biology and UCD Conway Institute, uses state-of-the-art NMR equipment to study a range of biological processes. Insights gained could help in the design of drugs for an array of medical conditions.

Long established as a powerful tool for determining the structure of small molecules, nuclear magnetic resonance (NMR) spectroscopy is now unravelling the secrets of previously inaccessible biological macromolecules, thanks to recent advances in the field. Bigger and more powerful spectrometers with higher magnetic field strengths offer new insights into the reactions happening in our bodies.

Enzymes, like other proteins, were traditionally characterised in the solid state by X-ray crystallography. NMR has a significant advantage as biomolecules can now be studied in their natural environment in bodily fluids and even in cell membranes using solid state NMR.

Inihibited enzymes

... more about:
»Inhibitor »Malthouse »NMR »Protease »Protein »enzyme

Protein-digesting enzymes called proteases play a role in propagating the AIDS virus, in allowing cancers and parasites to move through tissues and in the production of the plaque protein which causes Alzheimer’s disease.

Inhibiting these enzymes is key to treating such diseases. Drugs are designed to target enzymes by slotting into their active sites and shutting them down. Drug design seeks to optimise inhibitor binding, so we need to understand how the inhibitors interact with an enzyme.

"We are synthesising protease inhibitors and using NMR to determine how they interact with specific proteases. By studying these interactions we hope to see ways of optimising an inhibitor’s ability to inhibit the specific protease involved in a given disease,” explains Professor Malthouse.

Designing drugs

It is essential that potent protease inhibitors designed will only target the protease involved in the disease and not those which are essential for our bodies.

"We are currently starting to synthesise and characterise a range of inhibitors which we hope will provide important insights into the development of drugs to treat a range of medical conditions,” continues Professor Malthouse.

New targets for treatment of diabetes and obesity

A group including Professor Malthouse and Dr Chandralal Hewage, NMR scientist at the NMR Centre in UCD Conway Institute, have exploited NMR technology to solve the 3D solution structure of the gastrointestinal polypeptide GIP.

GIP is a hormone that stimulates the secretion of insulin after ingestion of food and has been linked to diabetes and obesity-related diseases.

A 3D picture of the protein was built step by step using a range of NMR experiments and molecular modelling calculations. Two-dimensional NMR spectra revealed information about the connectivities of the atoms, allowing the identity of each amino acid residue to be determined.

Dr Hewage explains the significance of these studies: “Understanding the structural requirements for the biological activity of GIP will help in the design of new drugs for diabetes and obesity related disorders.”

"Proteins are huge molecules but commercially viable drugs need to be a lot smaller both for ease of entry into cells and because of the manufacturing costs involved. Once the structure of the protein is known, the important residues can be identified and a smaller drug molecule synthesised.”

Orla Donoghue | alfa
Further information:
http://www.ucd.ie/cscb/

Further reports about: Inhibitor Malthouse NMR Protease Protein enzyme

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>