Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nuclear Magnetic Resonance observes inhibitors bound to enzymes

23.11.2006
A team of researchers led by Professor Paul Malthouse, principal investigator with the Centre for Synthesis and Chemical Biology and UCD Conway Institute, uses state-of-the-art NMR equipment to study a range of biological processes. Insights gained could help in the design of drugs for an array of medical conditions.

Long established as a powerful tool for determining the structure of small molecules, nuclear magnetic resonance (NMR) spectroscopy is now unravelling the secrets of previously inaccessible biological macromolecules, thanks to recent advances in the field. Bigger and more powerful spectrometers with higher magnetic field strengths offer new insights into the reactions happening in our bodies.

Enzymes, like other proteins, were traditionally characterised in the solid state by X-ray crystallography. NMR has a significant advantage as biomolecules can now be studied in their natural environment in bodily fluids and even in cell membranes using solid state NMR.

Inihibited enzymes

... more about:
»Inhibitor »Malthouse »NMR »Protease »Protein »enzyme

Protein-digesting enzymes called proteases play a role in propagating the AIDS virus, in allowing cancers and parasites to move through tissues and in the production of the plaque protein which causes Alzheimer’s disease.

Inhibiting these enzymes is key to treating such diseases. Drugs are designed to target enzymes by slotting into their active sites and shutting them down. Drug design seeks to optimise inhibitor binding, so we need to understand how the inhibitors interact with an enzyme.

"We are synthesising protease inhibitors and using NMR to determine how they interact with specific proteases. By studying these interactions we hope to see ways of optimising an inhibitor’s ability to inhibit the specific protease involved in a given disease,” explains Professor Malthouse.

Designing drugs

It is essential that potent protease inhibitors designed will only target the protease involved in the disease and not those which are essential for our bodies.

"We are currently starting to synthesise and characterise a range of inhibitors which we hope will provide important insights into the development of drugs to treat a range of medical conditions,” continues Professor Malthouse.

New targets for treatment of diabetes and obesity

A group including Professor Malthouse and Dr Chandralal Hewage, NMR scientist at the NMR Centre in UCD Conway Institute, have exploited NMR technology to solve the 3D solution structure of the gastrointestinal polypeptide GIP.

GIP is a hormone that stimulates the secretion of insulin after ingestion of food and has been linked to diabetes and obesity-related diseases.

A 3D picture of the protein was built step by step using a range of NMR experiments and molecular modelling calculations. Two-dimensional NMR spectra revealed information about the connectivities of the atoms, allowing the identity of each amino acid residue to be determined.

Dr Hewage explains the significance of these studies: “Understanding the structural requirements for the biological activity of GIP will help in the design of new drugs for diabetes and obesity related disorders.”

"Proteins are huge molecules but commercially viable drugs need to be a lot smaller both for ease of entry into cells and because of the manufacturing costs involved. Once the structure of the protein is known, the important residues can be identified and a smaller drug molecule synthesised.”

Orla Donoghue | alfa
Further information:
http://www.ucd.ie/cscb/

Further reports about: Inhibitor Malthouse NMR Protease Protein enzyme

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>