Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Innovative movies show real-time immune-cell activity within tumors

22.11.2006
Insights from new view may lead to improved cancer immunotherapies

Using advanced new microscopy techniques in concert with sophisticated transgenic technologies, scientists at The Wistar Institute have for the first time created three-dimensional, time-lapse movies showing immune cells targeting cancer cells in live tumor tissues. In recorded experiments, immune cells called T cells can be seen actively migrating though tissues, making direct contact with tumor cells, and killing them.

Insights from this new view of the body's on-board defenses against cancer may open the way for improved immunotherapies to treat the disease.

With a series of movies made under different experimental conditions, the researchers resolved important questions about the mechanisms by which T cells act against cancer. Their findings, published online November 20, will appear in the November 27 print edition of The Journal of Experimental Medicine.

"We've taken the first real-time look at the final phase of the immune system's response to cancer cells," says Wolfgang Weninger, M.D., an assistant professor in the Immunology Program at Wistar and senior author on the new study. "This has enabled us to delineate the rules of T cell migration and engagement directly within the intricate microenvironment of tumors."

The scientists used a leading-edge instrument called a two-photon microscope, able to peer inside living tissues. The microscope tracked and recorded the movements in three dimensions over time of T cells in a transgenic mouse developed by Weninger and Ulrich von Andrian at Harvard Medical School in which the cells fluoresce green. In addition, for this study, tumor cells in the mice were engineered to fluoresce blue.

In one group of the mice, a vaccine developed by Wistar professor and study co-author Hildegund C.J. Ertl, M.D., was used to activate the T cells that recognize a molecule on the surface of the tumor cells. Such molecules are referred to by immunologists as antigens. In a second group, no such vaccine was given.

Movies captured with the two-photon microscope then recorded the unfolding scene in the so-called tumor microenvironment. How would the green T cells behave in the two groups of mice?

"In the animals that received the vaccination, we saw two waves of activity after the T cells entered the tumor microenvironment," Weninger says. "Early on, the T cells didn't actively migrate through the tissue. This, we found, was because they were interacting directly with the tumor cells in place. In several instances, we were actually able to see the tumor cells dying – the first time that has ever been observed in real-time in living animals. Then, once the tumor cells had been destroyed, we saw a dramatic change in the behavior of the activated T cells. They began to migrate actively, searching for any other tumor cells that might remain in the area."

In contrast, in the mice that did not receive the vaccination, the T cells were much sparser and, importantly, distinctly inactive in their migration. Consequently, tumor cell death was very rare under these conditions.

The researchers then designed a second set of experiments to complement the first. In the first set of experiments, the T cells were varied in two groups of mice while the target tumor cells were uniform. In the second set, the T cells were uniform while the tumor cells varied in two groups of mice according to whether or not they presented a specific antigen to which the T cells would respond.

T cells were removed from mice without tumors, activated in the test tube, and then reintroduced into mice carrying tumors that either did or did not express the antigen. This procedure, referred to as adoptive transfer, is an immunotherapy strategy against cancer being tested in a number of human clinical trials. In some of those trials, a patient's own T cells are removed, tested for their ability to recognize the patient's cancer cells, activated and expanded greatly in numbers in the laboratory, and then returned to the patient.

The hope in these trials is that these enhanced T cell populations will specifically target and destroy the patient's cancer. To date, despite a few remarkable successes, these trials have proven frustratingly uneven. Greater insights into the mechanisms of interaction between T cells and tumor cells could provide vital new information to advance these efforts.

"Through adoptive transfer," Weninger explains, "we were able to compare two situations, one in which the T cells recognize something on the tumor and one in which they don't. When the T cells recognized the antigen, they interacted directly with the tumor cells. After tumor cell destruction, they became actively migratory, hunting for more tumor cells. In the absence of antigen, the T cells did not interact with tumor cells, and could not sustain an active migratory behavior within tumors."

"There are several significant conclusions from these experiments," Weninger says. "First, it is now possible to visualize the behavior of the individual cellular components of the tumor microenvironment in real-time. Second, we have demonstrated that T cells physically interact with tumor cells, which had not been shown before. Finally, it's the presence of antigen that determines how T cells migrate and interact with the tumor cells.

"These experiments set the basis for unraveling the molecular requirements for T cell migration and T cell-tumor cell interactions. We should then be able to use results from this research to further improve immunotherapeutic strategies against cancer in patients."

Franklin Hoke | EurekAlert!
Further information:
http://www.wistar.org

Further reports about: Antigen T cells Weninger microenvironment tumor cells

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>