Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Innovative movies show real-time immune-cell activity within tumors

22.11.2006
Insights from new view may lead to improved cancer immunotherapies

Using advanced new microscopy techniques in concert with sophisticated transgenic technologies, scientists at The Wistar Institute have for the first time created three-dimensional, time-lapse movies showing immune cells targeting cancer cells in live tumor tissues. In recorded experiments, immune cells called T cells can be seen actively migrating though tissues, making direct contact with tumor cells, and killing them.

Insights from this new view of the body's on-board defenses against cancer may open the way for improved immunotherapies to treat the disease.

With a series of movies made under different experimental conditions, the researchers resolved important questions about the mechanisms by which T cells act against cancer. Their findings, published online November 20, will appear in the November 27 print edition of The Journal of Experimental Medicine.

"We've taken the first real-time look at the final phase of the immune system's response to cancer cells," says Wolfgang Weninger, M.D., an assistant professor in the Immunology Program at Wistar and senior author on the new study. "This has enabled us to delineate the rules of T cell migration and engagement directly within the intricate microenvironment of tumors."

The scientists used a leading-edge instrument called a two-photon microscope, able to peer inside living tissues. The microscope tracked and recorded the movements in three dimensions over time of T cells in a transgenic mouse developed by Weninger and Ulrich von Andrian at Harvard Medical School in which the cells fluoresce green. In addition, for this study, tumor cells in the mice were engineered to fluoresce blue.

In one group of the mice, a vaccine developed by Wistar professor and study co-author Hildegund C.J. Ertl, M.D., was used to activate the T cells that recognize a molecule on the surface of the tumor cells. Such molecules are referred to by immunologists as antigens. In a second group, no such vaccine was given.

Movies captured with the two-photon microscope then recorded the unfolding scene in the so-called tumor microenvironment. How would the green T cells behave in the two groups of mice?

"In the animals that received the vaccination, we saw two waves of activity after the T cells entered the tumor microenvironment," Weninger says. "Early on, the T cells didn't actively migrate through the tissue. This, we found, was because they were interacting directly with the tumor cells in place. In several instances, we were actually able to see the tumor cells dying – the first time that has ever been observed in real-time in living animals. Then, once the tumor cells had been destroyed, we saw a dramatic change in the behavior of the activated T cells. They began to migrate actively, searching for any other tumor cells that might remain in the area."

In contrast, in the mice that did not receive the vaccination, the T cells were much sparser and, importantly, distinctly inactive in their migration. Consequently, tumor cell death was very rare under these conditions.

The researchers then designed a second set of experiments to complement the first. In the first set of experiments, the T cells were varied in two groups of mice while the target tumor cells were uniform. In the second set, the T cells were uniform while the tumor cells varied in two groups of mice according to whether or not they presented a specific antigen to which the T cells would respond.

T cells were removed from mice without tumors, activated in the test tube, and then reintroduced into mice carrying tumors that either did or did not express the antigen. This procedure, referred to as adoptive transfer, is an immunotherapy strategy against cancer being tested in a number of human clinical trials. In some of those trials, a patient's own T cells are removed, tested for their ability to recognize the patient's cancer cells, activated and expanded greatly in numbers in the laboratory, and then returned to the patient.

The hope in these trials is that these enhanced T cell populations will specifically target and destroy the patient's cancer. To date, despite a few remarkable successes, these trials have proven frustratingly uneven. Greater insights into the mechanisms of interaction between T cells and tumor cells could provide vital new information to advance these efforts.

"Through adoptive transfer," Weninger explains, "we were able to compare two situations, one in which the T cells recognize something on the tumor and one in which they don't. When the T cells recognized the antigen, they interacted directly with the tumor cells. After tumor cell destruction, they became actively migratory, hunting for more tumor cells. In the absence of antigen, the T cells did not interact with tumor cells, and could not sustain an active migratory behavior within tumors."

"There are several significant conclusions from these experiments," Weninger says. "First, it is now possible to visualize the behavior of the individual cellular components of the tumor microenvironment in real-time. Second, we have demonstrated that T cells physically interact with tumor cells, which had not been shown before. Finally, it's the presence of antigen that determines how T cells migrate and interact with the tumor cells.

"These experiments set the basis for unraveling the molecular requirements for T cell migration and T cell-tumor cell interactions. We should then be able to use results from this research to further improve immunotherapeutic strategies against cancer in patients."

Franklin Hoke | EurekAlert!
Further information:
http://www.wistar.org

Further reports about: Antigen T cells Weninger microenvironment tumor cells

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>