Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Teeth: a future renewable natural resource?

22.11.2006
Most vertebrates have continuous tooth generation, meaning that lost teeth are replaced with new teeth. Mammals, however, including humans, have teeth that are generally only replaced once, when milk teeth are replaced with permanent teeth.

Researchers from the Institute of Biotechnology at the University of Helsinki and their collaborators from Berlin and Kyoto have now shown that continuous tooth generation can be induced in mammals. The research results were published in the scientific journal Proceedings of the National Academy of Sciences, USA (PNAS).

The researchers activated the Wnt signalling pathway in mouse tissue; this signalling pathway is one of those used for cell communication and plays an important role in embryonic development. As a result of stimulating this particular signalling, one mouse molar developed dozens of new teeth with normal dentin, tooth enamel and developing roots. The crowns were, however, simple and cone-shaped, unlike the typically more complex multiple cusps of mouse molars.

The development of the new teeth was studied through tissue culture, and it became clear they were the result of germination from previously developed teeth, just like the teeth of lower vertebrates. The evolutionary trend in mammalian dentition has generally been toward a decrease in tooth generation, as well as towards a more complex shape of the crowns of teeth. The research indicates that Wnt signalling could have played a crucial role in these changes during evolution.

... more about:
»continuous »signalling »teeth

The results also suggest that mice have retained incipient potential for continuous tooth generation and that it can be unlocked by activating Wnt signalling. It is reasonable to conjecture that the potential for continuous tooth generation may also have been retained in humans. Who knows: perhaps dentists in the distant future may be able to use this million-year-old regenerative potential to make their patients grow new teeth to replace lost ones.

Satu Himanen | alfa
Further information:
http://www.helsinki.fi

Further reports about: continuous signalling teeth

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>