Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Teeth: a future renewable natural resource?

Most vertebrates have continuous tooth generation, meaning that lost teeth are replaced with new teeth. Mammals, however, including humans, have teeth that are generally only replaced once, when milk teeth are replaced with permanent teeth.

Researchers from the Institute of Biotechnology at the University of Helsinki and their collaborators from Berlin and Kyoto have now shown that continuous tooth generation can be induced in mammals. The research results were published in the scientific journal Proceedings of the National Academy of Sciences, USA (PNAS).

The researchers activated the Wnt signalling pathway in mouse tissue; this signalling pathway is one of those used for cell communication and plays an important role in embryonic development. As a result of stimulating this particular signalling, one mouse molar developed dozens of new teeth with normal dentin, tooth enamel and developing roots. The crowns were, however, simple and cone-shaped, unlike the typically more complex multiple cusps of mouse molars.

The development of the new teeth was studied through tissue culture, and it became clear they were the result of germination from previously developed teeth, just like the teeth of lower vertebrates. The evolutionary trend in mammalian dentition has generally been toward a decrease in tooth generation, as well as towards a more complex shape of the crowns of teeth. The research indicates that Wnt signalling could have played a crucial role in these changes during evolution.

... more about:
»continuous »signalling »teeth

The results also suggest that mice have retained incipient potential for continuous tooth generation and that it can be unlocked by activating Wnt signalling. It is reasonable to conjecture that the potential for continuous tooth generation may also have been retained in humans. Who knows: perhaps dentists in the distant future may be able to use this million-year-old regenerative potential to make their patients grow new teeth to replace lost ones.

Satu Himanen | alfa
Further information:

Further reports about: continuous signalling teeth

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>