Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New moth variety disarms plants guarded by selenium

21.11.2006
In new work, researchers report that the ability of plants to defend themselves by accumulating high levels of a toxic element can be overcome by some insects, and that such adaptation potentially echoes in the food web as other predators and parasites may in turn evolve to deal with high levels of the toxic element.

The findings, reported by Elizabeth Pilon-Smits of Colorado State University and colleagues there and at the University of California, Berkeley, appear in the November 21st issue of the journal Current Biology, published by Cell Press.

Some plants "hyperaccumulate" the element selenium to extreme levels--up to 1% of the plant's dry weight. Selenium, an element with properties similar to sulfur, is an essential trace element for many organisms, but it typically is toxic at high levels, and the function behind the intriguing tendency of some plants to hyperaccumulate this element has been largely obscure. The so-called elemental-defense hypothesis proposes that hyperaccumulated elements serve a defensive function against herbivory, the predation of plants by animals.

In their new work, the researchers showed that the selenium in the hyperaccumulator plant species known as prince's plume (Stanleya pinnata) protects it from caterpillar herbivory both by deterring feeding and by causing toxicity in the caterpillar. However, the researchers also showed that in the plant's natural habitat, a newly discovered variety of the invasive diamondback moth (Plutella xylostella) has disarmed the plant's elemental defense. The new moth variety in fact thrives on plants containing highly toxic selenium levels and, in contrast to related varieties, was not deterred from either laying eggs or feeding on the plant. Furthermore, the researchers found that a selenium-tolerant wasp (Diadegma insulare) in turn parasitizes the selenium-tolerant diamondback moth.

Chemical analysis showed that the selenium-tolerant moth and its parasite both accumulate selenium in the form of methylselenocysteine, the same form found in the hyperaccumulator plant, whereas related but selenium-sensitive moths accumulate selenium as selenocysteine. The latter form is toxic because of its ability to be incorporated into proteins.

The authors outline a possible course of events in the evolution of selenium tolerance in the newly discovered diamondback moth. Their overall conclusion is that although selenium hyperaccumulation protects plants from herbivory by some invertebrates, it can give rise to the evolution of unique selenium-tolerant herbivores, thereby providing a "portal" for selenium into the local ecosystem--that is, a pathway by which selenium hyperaccumulation may spread within parts of the food web.

The authors point out that in a broader context, the findings potentially have implications for a number of ways in which selenium accumulation might be utilized in different ecological and agricultural circumstances. Applying selenium to plants may be an efficient way to deter herbivory and improve crop productivity, and if managed carefully, the supplied selenium could give added value to the crop (some evidence suggests that selenium has anticarcinogenic properties). Furthermore, the newly discovered selenium-tolerant moth may be used for biological control of plants that hyperaccumulate selenium in areas where such plants cause poisoning of livestock. In addition, the selenium-hyperaccumulator plant may also be useful for removing and dispersing selenium from polluted water and soil. The authors note that such use of native selenium hyperaccumulators or of selenium-enriched agricultural crops--for environmental cleanup or as a source of anti-carcinogenic selenocompounds--may have ecological implications, as is clear from the apparent rapid evolution of selenium-tolerant insects shown in this study.

Heidi Hardman | EurekAlert!
Further information:
http://www.current-biology.com

Further reports about: herbivory moth selenium selenium-tolerant toxic variety

More articles from Life Sciences:

nachricht Complementing conventional antibiotics
24.05.2018 | Goethe-Universität Frankfurt am Main

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>