Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Fighting like a girl or boy determined by gene in fruit flies

Fighting like a girl or fighting like a boy is hardwired into fruit fly neurons, according to a study in the Nov. 19 Nature Neuroscience advance online publication by a research team from Harvard Medical School and the Institute of Molecular Pathology in Vienna.

The results confirm that a gene known as "fruitless" is a key factor underlying sexual differences in behavior. The findings mark a milestone in an unlikely new animal model for understanding the biology of aggression and how the nervous system gives rise to different behaviors.

"Aggression is a very serious problem in society, and it's a problem with a biological and genetic component," said co-author Edward Kravitz, the George Packer Berry professor of neurobiology at HMS, who developed the fruit fly fighting model used. "We want to understand that. I can't think of a better system to study than fruit flies. And no one gets hurt."

The fruitless gene is known for its role in male courtship. The large gene makes a set of male-specific proteins found exclusively in the nervous system of fruit flies, in about 2 percent of neurons. The proteins are necessary for normal courting. Males missing the proteins do not court females, and they sometimes court males, other research groups have shown. Females with a male version of the gene perform the male courting ritual with other females.

The same gene directs another sex-specific behavior – fighting patterns, the new study shows. Female fighting, for example, largely involves head butts and some shoving. Males prefer lunges; they rear up on their back legs and snap their forelegs down hard – sometimes nailing an opponent that is slow to retreat.

The flies undergo a major role reversal when the male and female gene versions are switched. With a feminine fruitless gene, male flies adopt more ladylike tactics, mostly the head butt and some shoving. With the masculine fruitless gene, females instinctively lunge to the exclusion of their usual maneuvers.

The gender-bending fruit flies were first developed to study courtship in the Austrian lab of co-author Barry Dickson, director of the Institute of Molecular Pathology. Dickson created male flies with the female version of the gene and female flies with the male version.

In Dickson's courtship studies, male fruit flies with the female fruitless gene were not acting like males, but it wasn't clear that they were acting like females, either. (Ultimately, courtship behavior is constrained by pheromones and anatomy, which do not change.) He contacted Kravitz, hoping that aggression studies would resolve the lingering question of male behavior changes.

Meanwhile, co-author Steven Nilsen, a postdoctoral fellow in Kravitz's lab, had similar questions and was staging contests between another line of mutant fruitless flies without such clear brain-switching genetics. So Austrian postdoctoral fellow Eleftheria Vrontou, the lead author, packed up their flies and took them to the Boston fruit fly fight club.

For the past five years, researchers in Kravitz's lab have been methodically scoring fruit fly fights to determine the normal aggression patterns with the long-term goal of documenting how genes and molecules change those patterns. They stage male fights on bottle-cap-sized food cups decorated with a headless female (a live female will fly away, leaving males nothing to fight over). Female flies fight over an extra dab of fresh yeast paste – their version of dark chocolate, Kravitz said. The flies are videotaped. The movies are replayed in slow motion to record each move and countermove.

"Ed has systematically developed reproducibly aggressive behavior in flies and paved the way for serious analysis," said Laurie Tompkins, program director at the National Institute of General Medical Sciences, which funds the work. The fruit fly aggression model is part of a new trend to use fruit flies as models to study complex behaviors, including sleep and responses to painful stimuli, Tompkins said. "Drosophila have marvelous advantages in terms of genetic tricks," she said, "and flies in many respects behave and respond similarly to humans."

The findings provide a welcome guidepost to help enable future research to track down the underlying neural circuitry, said Bruce Baker, a biology professor at Stanford who first linked the fruitless gene to male-specific courtship behavior. "That's a pretty big thing," Baker said. "We can think about understanding in molecular detail how we go from the initial genes and the proteins they encode to the nervous system that causes our body to respond in certain ways." More generally, he said, such studies form a potential bridge between systems neuroscience studies of behavior and modern molecular neuroscience research into individual neurons and synapses.

John Lacey | EurekAlert!
Further information:

Further reports about: Aggression behavior courtship fruit flies proteins studies

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>