Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Setting the Stage to Find Drugs Against SARS

21.11.2006
Scientists at the U.S. Department of Energy’s Brookhaven National Laboratory have set the stage for the rapid identification of compounds to fight against severe acquired respiratory syndrome (SARS), the atypical pneumonia responsible for about 800 deaths worldwide since first recognized in late 2002.

Researchers from Brookhaven’s biology department and the National Synchrotron Light Source (NSLS) characterized a component of the virus that will be the target of new anti-SARS virus drugs. The results were published online by Biochemistry on November 17, 2006.

“Although vaccines against viruses are very effective, vaccines for viruses that mutate rapidly – such as the viruses that cause SARS, AIDS, and bird flu – are much more difficult to obtain,” said Brookhaven biologist Walter Mangel, the lead author of the paper. “Even if a vaccine is available, antiviral agents are important in stopping the spread of highly infectious viruses. If antiviral agents for SARS had been available, they could have been used to contain the outbreak to the initial site of the infection.”

The researchers studied the SARS main proteinase, an enzyme used by the virus during infection to cut newly made viral proteins into gene-sized, functioning pieces. If the proteinase is prevented from working, the virus infection is aborted. Previous studies have revealed that the proteinase is inactive when in the form of single molecules. But once two of those molecules bind together to make what is called a dimer, the enzyme becomes active and is able to play its role in SARS virus reproduction. The challenge for researchers, and the focus of the Brookhaven study, was to determine the concentration at which individual proteinase molecules form active dimers. Knowing this concentration, for which estimates at other laboratories have varied greatly, would allow researchers to search for anti-SARS drugs more efficiently by ensuring that the proteinase used in tests is initially in its active form.

Using three different scientific techniques, including x-ray scattering at the NSLS, the Brookhaven researchers obtained almost identical values for this concentration. Now that this crucial value has been narrowed down to a precise range, researchers can focus on finding compounds that bind to the active form of the enzyme.

“Targets for antiviral drugs must be carefully chosen such that binding to it prevents the virus from reproducing,” Mangel said. “Viral proteinases are excellent targets for antiviral drugs. One reason so many people are surviving the AIDS epidemic is the effectiveness of drugs targeted to the proteinase of human immunodeficiency virus (HIV).”

One way to obtain compounds that bind to a proteinase is via high-throughput screening. Chemical libraries containing tens of thousands of small compounds are available that can be searched for effective drugs against various diseases. Small amounts of a target, e.g., an active viral proteinase, are placed in tiny wells in a plate, and a different compound from the library is added to each well.

To determine whether a compound binds to and inhibits the proteinase, an additional molecule is added that changes color in the presence of an active proteinase. Wells that don’t show a color change therefore contain compounds that inhibit the proteinase, and could be effective antiviral agents. Earlier this year, Mangel’s research group published a procedure on the synthesis of a new compound that changes color in the presence of the active form of the SARS main proteinase.

However, for this screening process to work, the SARS proteinase inserted into the wells has to be active to begin with. Knowing the concentration range for dimer formation will therefore help researchers in their search for a compound to stop the virus. “Now that the stage is set, high-throughput screening can begin,” Mangel said. “Hopefully, it will yield an antiviral agent that can be stockpiled before a virulent strain of the virus reappears.”

This research was supported by the Office of Basic Energy Sciences within the U.S. Department of Energy and the National Institutes of Health.

Karen McNulty Walsh | EurekAlert!
Further information:
http://www.bnl.gov

Further reports about: Brookhaven SARS Vaccine antiviral concentration proteinase

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>