Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene expression profiling not quite perfected in predicting lung cancer prognosis

21.11.2006
While there have been significant advances in the use of gene expression profiling to assess a cancer prognosis, a Mayo Clinic review and analysis of existing lung cancer studies shows that this technology has not yet surpassed the accuracy of conventional methods used to assess survival in lung cancer patients.

The interest in and the knowledge of gene expression profiling in medical science has exploded since the completion of the human genome project in 2003. Researchers caution that the science of gene expression profiling, in which scientists examine the genetic signature of a cell, is in its infancy, particularly in lung cancer.

"Growing evidence suggests that gene-based prediction is not stable and little is known about the prediction power of a gene expression profile as compared to well-known clinical and pathologic predictors," according to Ping Yang, M.D., Ph.D., the corresponding author of the study that appears in the November issue of Cancer Epidemiology, Biomarkers and Prevention (CEBP). The study's first author is Zhifu Sun, M.D., a research associate with the Department of Health Sciences Research at Mayo Clinic.

Dr. Yang, a researcher with Mayo Clinic's Department of Health Sciences, said that while gene expression profiling has been successfully used to classify various tumors and assess tumor stage, metastasis and patient survival rates, the evidence suggests that gene-based prediction for lung cancer is not yet entirely dependable. However, some results have been promising: gene profiling has reliably predicted patient survival for lung adenocarcinoma almost as well as established predictors.

... more about:
»Clinical »lung cancer »outcome »profiling

The results of conventional methods that factor in age, gender, stage, cell type and tumor grade outweigh the predictive advantage of a gene expression profile. "Any new technique that does not significantly outperform less expensive and easily conducted approaches is less likely to be useful in clinical practice," the authors wrote.

Few studies have compared conventional methods of lung cancer prediction with gene profiling. It remains to be seen whether gene expression profiling of lung cancer cases can replace or augment the existing assessment tools and, furthermore, whether it can lead to improved patient care.

In terms of problems associated with gene expression profiling in lung cancer research, the authors found:

- The accuracy of gene expression-based outcome prediction varies greatly among studies.

- Most studies lacked independent validation.

- Clinical outcome prediction between gene expression profiles and pathological features overlap significantly.

- Current analytical algorithms favor genes at high expression or genes highly differentially expressed, most of which are related to tumor differentiation and may not correlate with clinical outcomes; conversely, genes expressed at low levels or in a subtle difference are often overlooked, which may be quite relevant biologically to clinical questions.

The authors of the study recommend that medical scientists engaged in gene expression profiling should:

- Clearly define a study aim. The main focus in microarray studies should explore the molecular explanations for varied clinical outcomes given a group of patients with similar clinical and pathological characteristics.

- Lay out and compare alternative study designs

- Carefully select samples in terms of size, quality and unambiguous clinical outcomes

- Understand the limitations of DNA microarray

- Provide clinically relevant interpretation from the study results and address the value added in practice

Amy Reyes | EurekAlert!
Further information:
http://www.mayo.edu

Further reports about: Clinical lung cancer outcome profiling

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>