Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly Adult-born Neurons Are Functionally Similar to Mature Neurons

21.11.2006
Adult neurogenesis produces neurons with similar functional properties to mature neurons in the hippocampus of mice

In mammals, the production of new brain cells occurs primarily at the time the nervous system is developing, although certain brain areas generate neurons throughout adulthood. One such area is the hippocampus, a part of the brain involved in the critical function of memory and spatial perception. Hippocampal cells, specifically dentate granule cells, are continuously produced in adults as well as in young animals.

How these “adult-born” cells build their connections with the rest of the brain, and the extent to which they resemble “pup-born” cells, is of great interest to those who would like to coax other parts of adult brains to make new cells as a strategy for reversing the loss of function from trauma or degenerative disorders. To find out whether adult-born hippocampal neurons have different properties than mature neurons that arose when the brain was developing, Diego Laplagne, Alejandro Schinder, and colleagues compared how each type of neuron incorporated functionally into brain circuits.

The researchers’ first task was to figure out a way to distinguish between pup-born and adult-born neurons in brain tissue that contained both. To accomplish that task, they used retroviruses to introduce one kind of fluorescent protein into the developing neurons and a second protein into the adult mouse brain. As a result of this treatment, the pup-born cells fluoresced green and the adult-born cells fluoresced red, making them readily distinguishable in brain slices.

... more about:
»Hippocampus »Neuron »adult-born »neurons »pup-born

Once they could tell the two types of cells apart, the researchers gained insight into the connections formed. They looked at glutamatergic (excitatory) nerves connecting the hippocampus with the entorhinal cortex, another brain area associated with memory. When they stimulated the excitatory inputs carrying information from the neocortex to the hippocampus, the researchers evoked similar responses in both pup-born and adult-born neurons. Moreover, both cell types responded in the same dynamic manner to the stimulation, suggesting their ability to undergo synaptic plasticity is similar. Next, the researchers looked at GABAergic (inhibitory) inputs from interneurons that connect to the body and dendrites of the hippocampal neurons. Again, they see the responses are similar in frequency, amplitude, and kinetics between the pup-born and adult-born cells.

Having shown that pup-born and adult-born neurons respond to both excitatory and inhibitory inputs in the same way, the researchers next turned their attention to how the two types of cells integrate the signals from the various inputs to produce an action potential, or spike (which leads to the communication of the signal to subsequent neurons). Spiking probability varied among neurons but was not distinguishable between the two cell types, further supporting the earlier indications that adult-born and pup-born neurons function in fundamentally the same way.

Given the functional similarities between adult-born and pup-born neurons, this means that at least some neurons that develop in adult brains can form connections that are indistinguishable from connections formed by neurons that develop early in life—a hopeful finding for those who have set their sights on one day being able to repair damaged or deteriorated brain tissue.

Citation: Laplagne DA, Espo´ sito MS, Piatti VC, Morgenstern NA, Zhao C, et al. (2006) Functional convergence of neurons generated in the developing and adult hippocampus. PLoS Biol 4(12): e409. DOI: 10.1371/journal.pbio.0040409.

Andrew Hyde | alfa
Further information:
http://www.plosbiology.org

Further reports about: Hippocampus Neuron adult-born neurons pup-born

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>