Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly Adult-born Neurons Are Functionally Similar to Mature Neurons

21.11.2006
Adult neurogenesis produces neurons with similar functional properties to mature neurons in the hippocampus of mice

In mammals, the production of new brain cells occurs primarily at the time the nervous system is developing, although certain brain areas generate neurons throughout adulthood. One such area is the hippocampus, a part of the brain involved in the critical function of memory and spatial perception. Hippocampal cells, specifically dentate granule cells, are continuously produced in adults as well as in young animals.

How these “adult-born” cells build their connections with the rest of the brain, and the extent to which they resemble “pup-born” cells, is of great interest to those who would like to coax other parts of adult brains to make new cells as a strategy for reversing the loss of function from trauma or degenerative disorders. To find out whether adult-born hippocampal neurons have different properties than mature neurons that arose when the brain was developing, Diego Laplagne, Alejandro Schinder, and colleagues compared how each type of neuron incorporated functionally into brain circuits.

The researchers’ first task was to figure out a way to distinguish between pup-born and adult-born neurons in brain tissue that contained both. To accomplish that task, they used retroviruses to introduce one kind of fluorescent protein into the developing neurons and a second protein into the adult mouse brain. As a result of this treatment, the pup-born cells fluoresced green and the adult-born cells fluoresced red, making them readily distinguishable in brain slices.

... more about:
»Hippocampus »Neuron »adult-born »neurons »pup-born

Once they could tell the two types of cells apart, the researchers gained insight into the connections formed. They looked at glutamatergic (excitatory) nerves connecting the hippocampus with the entorhinal cortex, another brain area associated with memory. When they stimulated the excitatory inputs carrying information from the neocortex to the hippocampus, the researchers evoked similar responses in both pup-born and adult-born neurons. Moreover, both cell types responded in the same dynamic manner to the stimulation, suggesting their ability to undergo synaptic plasticity is similar. Next, the researchers looked at GABAergic (inhibitory) inputs from interneurons that connect to the body and dendrites of the hippocampal neurons. Again, they see the responses are similar in frequency, amplitude, and kinetics between the pup-born and adult-born cells.

Having shown that pup-born and adult-born neurons respond to both excitatory and inhibitory inputs in the same way, the researchers next turned their attention to how the two types of cells integrate the signals from the various inputs to produce an action potential, or spike (which leads to the communication of the signal to subsequent neurons). Spiking probability varied among neurons but was not distinguishable between the two cell types, further supporting the earlier indications that adult-born and pup-born neurons function in fundamentally the same way.

Given the functional similarities between adult-born and pup-born neurons, this means that at least some neurons that develop in adult brains can form connections that are indistinguishable from connections formed by neurons that develop early in life—a hopeful finding for those who have set their sights on one day being able to repair damaged or deteriorated brain tissue.

Citation: Laplagne DA, Espo´ sito MS, Piatti VC, Morgenstern NA, Zhao C, et al. (2006) Functional convergence of neurons generated in the developing and adult hippocampus. PLoS Biol 4(12): e409. DOI: 10.1371/journal.pbio.0040409.

Andrew Hyde | alfa
Further information:
http://www.plosbiology.org

Further reports about: Hippocampus Neuron adult-born neurons pup-born

More articles from Life Sciences:

nachricht Tag it EASI – a new method for accurate protein analysis
20.06.2018 | Max-Planck-Institut für Biochemie

nachricht How to track and trace a protein: Nanosensors monitor intracellular deliveries
19.06.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>