Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nerve fibers need specific growth factor chemical to form connections within the brain

20.11.2006
UC Irvine study on neuronal circuits may help explain memory and cognitive decline in Alzheimer’s disease

A discovery on how neural circuitry develops to aid proper cerebral cortex activity may help explain the memory and cognitive decline seen in Alzheimer’s disease patients – a discovery that could point toward potential treatments, according to UC Irvine scientists.

The study uncovers how cholinergic neuronal circuits, which help the cerebral cortex process information more efficiently, rely on neurotrophin-3, a chemical that stimulates nerve growth. The scientists have determined the circuits need this chemical in order to recognize and reach their target nerve cells in the brain.

Richard Robertson, professor of anatomy and neurobiology, and other researchers from UCI’s School of Medicine found that cholinergic nerve fibers grow toward sources of neurotrophin-3 during early development. In experiments with mice, without neurotrophin-3 to direct growth, the developing cholinergic nerve fibers appeared to not recognize their normal target cells in the brain. Because of this, the axon nerve fibers aided by these circuits grew irregularly and missed their specific target neural cells.

This finding, according to Robertson, has significant implications for neurodegenerative diseases like Alzheimer’s. Cholinergic neuronal circuits play a key role in the proper information processing by the cerebral cortex and other areas of the brain. The cerebral cortex is the part of the brain that determines intelligence, personality, and planning and organization, and these actions are compromised by neurodegenerative diseases.

“Studies on the brains of Alzheimer’s patients have shown a marked decline in these cholinergic circuits. Our work demonstrates that neurotrophin-3 is essential to maintain the connections to cerebral cortex neurons,” Robertson said. “This study shows that a neurotrophin-3 therapy may be able to induce nerve fibers to regrow in the cerebral cortex, which would be beneficial to people with Alzheimer’s.”

Study results appear in the Dec. 1 issue of the journal Neuroscience.

In further studies on this subject, supported by a recently awarded three-year grant from the Alzheimer’s Association, Robertson and his colleagues are testing the respective roles of nerve growth factor and neurotrophin-3 in a laboratory model of Alzheimer’s disease. Laboratory rats with experimental damage to forebrain cholinergic circuits will be treated with either nerve growth factor or neurotrophin-3, or a combination of both, to determine their ability to produce anatomical, molecular and behavioral recovery.

Janie L. Baratta, Jen Yu and Kathleen M. Guthrie of UCI also worked on the study. The National Institutes of Health and the Alzheimer’s Association provided funding support.

About the University of California, Irvine: The University of California, Irvine is a top-ranked university dedicated to research, scholarship and community service. Founded in 1965, UCI is among the fastest-growing University of California campuses, with more than 25,000 undergraduate and graduate students and about 1,400 faculty members. The second-largest employer in dynamic Orange County, UCI contributes an annual economic impact of $3.7 billion. For more UCI news, visit www.today.uci.edu.

Television: UCI has a broadcast studio available for live or taped interviews. For more information, visit www.today.uci.edu/broadcast.

News Radio: UCI maintains on campus an ISDN line for conducting interviews with its faculty and experts. The use of this line is available free-of-charge to radio news programs/stations who wish to interview UCI faculty and experts. Use of the ISDN line is subject to availability and approval by the university.

Richard Robertson | EurekAlert!
Further information:
http://www.today.uci.edu
http://www.today.uci.edu/broadcast

More articles from Life Sciences:

nachricht Flavins keep a handy helper in their pocket
25.04.2018 | University of Freiburg

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>