Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nerve fibers need specific growth factor chemical to form connections within the brain

20.11.2006
UC Irvine study on neuronal circuits may help explain memory and cognitive decline in Alzheimer’s disease

A discovery on how neural circuitry develops to aid proper cerebral cortex activity may help explain the memory and cognitive decline seen in Alzheimer’s disease patients – a discovery that could point toward potential treatments, according to UC Irvine scientists.

The study uncovers how cholinergic neuronal circuits, which help the cerebral cortex process information more efficiently, rely on neurotrophin-3, a chemical that stimulates nerve growth. The scientists have determined the circuits need this chemical in order to recognize and reach their target nerve cells in the brain.

Richard Robertson, professor of anatomy and neurobiology, and other researchers from UCI’s School of Medicine found that cholinergic nerve fibers grow toward sources of neurotrophin-3 during early development. In experiments with mice, without neurotrophin-3 to direct growth, the developing cholinergic nerve fibers appeared to not recognize their normal target cells in the brain. Because of this, the axon nerve fibers aided by these circuits grew irregularly and missed their specific target neural cells.

This finding, according to Robertson, has significant implications for neurodegenerative diseases like Alzheimer’s. Cholinergic neuronal circuits play a key role in the proper information processing by the cerebral cortex and other areas of the brain. The cerebral cortex is the part of the brain that determines intelligence, personality, and planning and organization, and these actions are compromised by neurodegenerative diseases.

“Studies on the brains of Alzheimer’s patients have shown a marked decline in these cholinergic circuits. Our work demonstrates that neurotrophin-3 is essential to maintain the connections to cerebral cortex neurons,” Robertson said. “This study shows that a neurotrophin-3 therapy may be able to induce nerve fibers to regrow in the cerebral cortex, which would be beneficial to people with Alzheimer’s.”

Study results appear in the Dec. 1 issue of the journal Neuroscience.

In further studies on this subject, supported by a recently awarded three-year grant from the Alzheimer’s Association, Robertson and his colleagues are testing the respective roles of nerve growth factor and neurotrophin-3 in a laboratory model of Alzheimer’s disease. Laboratory rats with experimental damage to forebrain cholinergic circuits will be treated with either nerve growth factor or neurotrophin-3, or a combination of both, to determine their ability to produce anatomical, molecular and behavioral recovery.

Janie L. Baratta, Jen Yu and Kathleen M. Guthrie of UCI also worked on the study. The National Institutes of Health and the Alzheimer’s Association provided funding support.

About the University of California, Irvine: The University of California, Irvine is a top-ranked university dedicated to research, scholarship and community service. Founded in 1965, UCI is among the fastest-growing University of California campuses, with more than 25,000 undergraduate and graduate students and about 1,400 faculty members. The second-largest employer in dynamic Orange County, UCI contributes an annual economic impact of $3.7 billion. For more UCI news, visit www.today.uci.edu.

Television: UCI has a broadcast studio available for live or taped interviews. For more information, visit www.today.uci.edu/broadcast.

News Radio: UCI maintains on campus an ISDN line for conducting interviews with its faculty and experts. The use of this line is available free-of-charge to radio news programs/stations who wish to interview UCI faculty and experts. Use of the ISDN line is subject to availability and approval by the university.

Richard Robertson | EurekAlert!
Further information:
http://www.today.uci.edu
http://www.today.uci.edu/broadcast

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>