Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Targeting leukemic stem cells by Bcl-2 inhibition

20.11.2006
Study in laboratory cell cultures, patient samples shows promise

Researchers at The University of Texas M. D. Anderson Cancer Center have found, in laboratory studies, that the experimental drug ABT-737 which has shown promise in some cancers, can destroy acute myeloid leukemia (AML) blast, progenitor and even stem cells that are often resistant to standard chemotherapy treatment.

The drug was powerful in its own right, the researchers say, but they found that some AML cells were themselves resistant to ABT-737, so they added another drug that knocked out this secondary resistance. Together, these agents may provide a powerful therapy against AML, and could form the basis of a new way to treat the cancer, say the scientists, whose study was published in the November 14 issue of the journal, Cancer Cell.

"The combination of these two experimental drugs provides the highest synergistic action I have ever seen against acute myeloid leukemia cells," said the study's lead author, Michael Andreeff, M.D., Ph.D., professor in the Departments of Stem Cell Transplantation and Leukemia.

... more about:
»ABT-737 »AML »Andreeff »Bcl-2 »Mcl-1 »Protein »chemotherapy »leukemia

Although the study was done in laboratory cell cultures and AML cells obtained from patients, Andreeff said he hopes that a combination of these two agents could be tested in eligible patients when they receive standard chemotherapy treatment. "ABT-737 would overcome resistance to chemotherapy that we often see in AML therapy, and the second drug would overcome resistance to ABT-737," he said.

"ABT-737 represents a completely new class of agents that could have a major impact on a number of cancers, and we have now seen that AML will likely be among them," Andreeff added.

The successful use of ABT-737 in animal models of human small-cell lung cancer and cancers of the lymph system were reported in 2005 by researchers from Abbott Laboratories, which developed the compound.

The agent works by manipulating members of the BCL-2 family of proteins, which includes both pro-apoptotic and anti-apoptotic molecules. (Apoptosis is a process whereby a cell kills itself because it is seriously injured or growing out of control).

ABT-737 targets the best-known member of the group, also called BCL-2, which is a cell "survival" protein that is over-expressed in many types of cancer. This protein prevents a cell from committing apoptosis by latching on to other BCL-2 family member proteins that promote cell death, thus rendering them ineffective. ABT-737, however, was engineered to fit tightly on to BCL-2, occupying that binding space so that the other pro-apoptotic proteins can function and promote cell death.

In this study, Andreeff and a team of researchers found that ABT-737 "potently" kills AML cell lines as well as blast cells taken from AML patients. "Most importantly, our results demonstrated killing of the progenitor and stem cells responsible for production of AML, which makes this a truly innovative treatment for different leukemias and cancer," Andreeff said.

However, AML cells in which another anti-apoptotic protein known as MCL-1 is over expressed did not die, which makes this protein a "resistance factor" to ABT-737 and to standard chemotherapy, he said. "In myeloid leukemia, MCL-1 can be more important than BCL-2 because when a cell has a significant amount of MCL-1, many drugs don't work," said Andreeff. In fact, he added, patients whose cells over-express MCL-1 were found by his group to have a poorer outcome.

So, the researchers added an experimental drug, a MAP-kinase inhibitor, to knock down MCL-1 expression, and found that this inhibitor also worked to inhibit cells in which BCL-2 is phosphorylated, which can switch a protein on or off. "ABT-737 had diminished effects against cells with phosphorylated BCL-2, which was restored by combination with a MAPK inhibitor," Andreeff said.

The study helps refine the understanding of the effects of ABT-737 on cancer cells, he said.

By using knock-out technology, the researchers also found that in leukemia cells, ABT-737 was dependent on two proteins called BAX and BAK to trigger apoptosis. Other researchers have said that the critical partner to ABT-737 was a similar protein known as BIM. "Both of these proteins poke holes in a cell mitochondria and release proteins that initiate cell death, but it is important to know that BAX and BAK are the important players," he said.

Andreeff said that the next step for M. D. Anderson researchers is to test ABT-737 in patients with leukemias.

Julie A. Penne | EurekAlert!
Further information:
http://www.mdanderson.org

Further reports about: ABT-737 AML Andreeff Bcl-2 Mcl-1 Protein chemotherapy leukemia

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>