Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Targeting leukemic stem cells by Bcl-2 inhibition

20.11.2006
Study in laboratory cell cultures, patient samples shows promise

Researchers at The University of Texas M. D. Anderson Cancer Center have found, in laboratory studies, that the experimental drug ABT-737 which has shown promise in some cancers, can destroy acute myeloid leukemia (AML) blast, progenitor and even stem cells that are often resistant to standard chemotherapy treatment.

The drug was powerful in its own right, the researchers say, but they found that some AML cells were themselves resistant to ABT-737, so they added another drug that knocked out this secondary resistance. Together, these agents may provide a powerful therapy against AML, and could form the basis of a new way to treat the cancer, say the scientists, whose study was published in the November 14 issue of the journal, Cancer Cell.

"The combination of these two experimental drugs provides the highest synergistic action I have ever seen against acute myeloid leukemia cells," said the study's lead author, Michael Andreeff, M.D., Ph.D., professor in the Departments of Stem Cell Transplantation and Leukemia.

... more about:
»ABT-737 »AML »Andreeff »Bcl-2 »Mcl-1 »Protein »chemotherapy »leukemia

Although the study was done in laboratory cell cultures and AML cells obtained from patients, Andreeff said he hopes that a combination of these two agents could be tested in eligible patients when they receive standard chemotherapy treatment. "ABT-737 would overcome resistance to chemotherapy that we often see in AML therapy, and the second drug would overcome resistance to ABT-737," he said.

"ABT-737 represents a completely new class of agents that could have a major impact on a number of cancers, and we have now seen that AML will likely be among them," Andreeff added.

The successful use of ABT-737 in animal models of human small-cell lung cancer and cancers of the lymph system were reported in 2005 by researchers from Abbott Laboratories, which developed the compound.

The agent works by manipulating members of the BCL-2 family of proteins, which includes both pro-apoptotic and anti-apoptotic molecules. (Apoptosis is a process whereby a cell kills itself because it is seriously injured or growing out of control).

ABT-737 targets the best-known member of the group, also called BCL-2, which is a cell "survival" protein that is over-expressed in many types of cancer. This protein prevents a cell from committing apoptosis by latching on to other BCL-2 family member proteins that promote cell death, thus rendering them ineffective. ABT-737, however, was engineered to fit tightly on to BCL-2, occupying that binding space so that the other pro-apoptotic proteins can function and promote cell death.

In this study, Andreeff and a team of researchers found that ABT-737 "potently" kills AML cell lines as well as blast cells taken from AML patients. "Most importantly, our results demonstrated killing of the progenitor and stem cells responsible for production of AML, which makes this a truly innovative treatment for different leukemias and cancer," Andreeff said.

However, AML cells in which another anti-apoptotic protein known as MCL-1 is over expressed did not die, which makes this protein a "resistance factor" to ABT-737 and to standard chemotherapy, he said. "In myeloid leukemia, MCL-1 can be more important than BCL-2 because when a cell has a significant amount of MCL-1, many drugs don't work," said Andreeff. In fact, he added, patients whose cells over-express MCL-1 were found by his group to have a poorer outcome.

So, the researchers added an experimental drug, a MAP-kinase inhibitor, to knock down MCL-1 expression, and found that this inhibitor also worked to inhibit cells in which BCL-2 is phosphorylated, which can switch a protein on or off. "ABT-737 had diminished effects against cells with phosphorylated BCL-2, which was restored by combination with a MAPK inhibitor," Andreeff said.

The study helps refine the understanding of the effects of ABT-737 on cancer cells, he said.

By using knock-out technology, the researchers also found that in leukemia cells, ABT-737 was dependent on two proteins called BAX and BAK to trigger apoptosis. Other researchers have said that the critical partner to ABT-737 was a similar protein known as BIM. "Both of these proteins poke holes in a cell mitochondria and release proteins that initiate cell death, but it is important to know that BAX and BAK are the important players," he said.

Andreeff said that the next step for M. D. Anderson researchers is to test ABT-737 in patients with leukemias.

Julie A. Penne | EurekAlert!
Further information:
http://www.mdanderson.org

Further reports about: ABT-737 AML Andreeff Bcl-2 Mcl-1 Protein chemotherapy leukemia

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>