Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rice chemists create, grow nanotube seeds

20.11.2006
Study proves validity of Smalley's SWNT Amplification Concept

Rice University chemists today revealed the first method for cutting carbon nanotubes into "seeds" and using those seeds to sprout new nanotubes. The findings offer hope that seeded growth may one day produce the large quantities of pure nanotubes needed for dozens of materials applications.

The research is available online and slated to appear in an upcoming issue of the Journal of the American Chemical Society.

Like vintners who hope to grow new vineyards from a handful of grape vine cuttings, Rice's chemists hope their new method of seeded growth for carbon nanotubes will allow them to reproduce their very best samples en masse.

... more about:
»Nanotube »SWNT »Smalley »chemists »quantities

"Carbon nanotubes come in lots of diameters and types, and our goal is to take a pure sample of just one type and duplicate it in large quantities," said corresponding author James Tour, director of Rice's Carbon Nanotechnology Laboratory (CNL). "We've shown that the concept can work."

The study's lead author, CNL founder and nanotube pioneer Richard Smalley, died in October 2005 after a long battle with leukemia. Tour said Smalley devoted an enormous amount of time and energy to the seeded-growth nanotube amplification research in the final two years of his life.

"Rick was intent on using nanotechnology to solve the world's energy problems, and he knew we needed to find a way to make large quantities of pure nanotubes of a particular type in order to re-wire power grids and make electrical energy widely available for future needs," Tour said. "Rick had a way of making things happen, and for six months during 2004, there were no fewer than 50 researchers in four Rice laboratories devoting their effort to this problem. It was unprecedented, and it paid off."

First discovered just 15 years ago, single-walled carbon nanotubes (SWNTs) are molecules of pure carbon with many unique properties. Smaller in diameter than a virus, nanotubes are about 100 times stronger than steel, weigh about one-sixth as much and are among the world's best electrical conductors and semi-conductors. Smalley, who devoted the last 10 years of his career to studying SWNTs, pioneered the first method for mass-producing them and many of the techniques scientists use to study them.

There are dozens of types of SWNTs, each with a characteristic atomic arrangement. These variations, though slight, can lead to drastically different properties: Some nanotubes are like metals, and others are semiconductors. While materials scientists are anxious to use SWNTs in everything from bacteria-sized computer chips to geostationary space elevators, most applications require pure compounds. Since all nanotube production methods, including the industrial-scale system Smalley invented in the 1990s, create a variety of 80-odd types, the challenge of making mass quantities of pure tubes – which Smalley referred to as "SWNT amplification" – is one of the major, unachieved goals of nanoscience.

"Rick envisioned a revolutionary system like PCR (polymerase chain reaction), where very small samples could be exponentially amplified," Tour said. "We're not there yet. Our demonstration involves single nanotubes, and our yields are still very low, but the amplified growth route is demonstrated."

The nanotube seeds are about 200 nanometers long and one nanometer wide – length-to-diameter dimensions roughly equal to a 16-foot garden house. After cutting, the seeds underwent a series of chemical modifications. Bits of iron were attached at each end, and a polymer wrapper was added that allowed the seeds to stick to a smooth piece of silicon oxide. After burning away the polymer and impurities, the seeds were placed inside a pressure-controlled furnace filled with ethylene gas. With the iron acting as a catalyst, the seeds grew spontaneously from both ends, growing to more than 30 times their initial length – imagine that 16-foot water hose growing by more than 500 feet – in just a few minutes.

Tour, Chao Professor of Chemistry, professor of mechanical engineering and materials science and professor of computer science, said CNL's team has yet to prove that the added growth has the same atomic architecture – known as chirality – of the seeds. However, he said the added growth had the same diameter as the original seed, which suggests that the methodology is successful.

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu

Further reports about: Nanotube SWNT Smalley chemists quantities

More articles from Life Sciences:

nachricht New photocatalyst speeds up the conversion of carbon dioxide into chemical resources
29.05.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>